Soner Camuz, Anders Liljerehn, Kristina Wärmefjord, R. Söderberg
{"title":"用于检测可转位切削刀具刀尖座内承载区域的算法","authors":"Soner Camuz, Anders Liljerehn, Kristina Wärmefjord, R. Söderberg","doi":"10.1115/1.4064255","DOIUrl":null,"url":null,"abstract":"\n Maintaining an even pressure distribution in an indexable cutting tool interface is crucial to the life expectancy of a carbide insert. Avoiding uneven pressure distribution is highly relevant for intermittent cutting operations because two load cases arise for full immersion, inside and outside the cutting zone, which can cause alternating contact positioning. Current positioning methodologies, such as 3-2-1 principles, do not consider external mechanical forces, which must be considered for insert-tool body positioning designs. Therefore, this paper proposes an algorithm to calculate a contact index to aid in the design of locating schemes for the early design phases of insert-tool body interface design. The results indicate that it is possible to visualize where a contact condition needs to exist to give support based on the mechanical loads acting on the insert.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"13 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithm for Detecting Load-Carrying Regions within the Tip Seat of an Indexable Cutting Tool\",\"authors\":\"Soner Camuz, Anders Liljerehn, Kristina Wärmefjord, R. Söderberg\",\"doi\":\"10.1115/1.4064255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Maintaining an even pressure distribution in an indexable cutting tool interface is crucial to the life expectancy of a carbide insert. Avoiding uneven pressure distribution is highly relevant for intermittent cutting operations because two load cases arise for full immersion, inside and outside the cutting zone, which can cause alternating contact positioning. Current positioning methodologies, such as 3-2-1 principles, do not consider external mechanical forces, which must be considered for insert-tool body positioning designs. Therefore, this paper proposes an algorithm to calculate a contact index to aid in the design of locating schemes for the early design phases of insert-tool body interface design. The results indicate that it is possible to visualize where a contact condition needs to exist to give support based on the mechanical loads acting on the insert.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":\"13 7\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064255\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4064255","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Algorithm for Detecting Load-Carrying Regions within the Tip Seat of an Indexable Cutting Tool
Maintaining an even pressure distribution in an indexable cutting tool interface is crucial to the life expectancy of a carbide insert. Avoiding uneven pressure distribution is highly relevant for intermittent cutting operations because two load cases arise for full immersion, inside and outside the cutting zone, which can cause alternating contact positioning. Current positioning methodologies, such as 3-2-1 principles, do not consider external mechanical forces, which must be considered for insert-tool body positioning designs. Therefore, this paper proposes an algorithm to calculate a contact index to aid in the design of locating schemes for the early design phases of insert-tool body interface design. The results indicate that it is possible to visualize where a contact condition needs to exist to give support based on the mechanical loads acting on the insert.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping