Femke Bellen, Elisa Carbone, Pieter Baatsen, E. A. Jones, F. Kabirian, Ruth Heying
{"title":"通过氨基溶解、水解和组合方法进行表面改性,改善内皮细胞与聚己内酯的相互作用","authors":"Femke Bellen, Elisa Carbone, Pieter Baatsen, E. A. Jones, F. Kabirian, Ruth Heying","doi":"10.1155/2023/5590725","DOIUrl":null,"url":null,"abstract":"Polycaprolactone (PCL) is a promising material for the fabrication of alternatives to autologous grafts used in coronary bypass surgery. PCL biodegrades over time, allowing cells to infiltrate the polymeric matrix, replacing the biodegrading graft, and creating a fully functional vessel constituted of autologous tissue. However, the high hydrophobicity of PCL is associated with poor cell affinity. Surface modification of PCL can increase this cell affinity, making PCL an improved scaffold material for acellular vascular grafts. In this study, the surface of PCL films was modified by hydrolysis, aminolysis, and the combination thereof to introduce carboxyl, hydroxyl, and amino groups on the surface. Only the hydrolyzed films exhibited a significant increase in their hydrophilicity, although further testing showed that all aminolysis conditions had amino groups on the surface. Furthermore, in vitro experiments with human umbilical endothelial cells (HUVECs) were performed to assess changes in cell affinity for PCL due to the surface treatments. PCL treated with sodium hydroxide (NaOH), a hydrolysis reaction, showed a significant increase in endothelial cell adhesion after 24 hours with a significant increase in cell survival after 72 hours. Thus, NaOH treatment improves the biocompatibility and endothelialization of PCL, creating a competent candidate for artificial, acellular, biodegradable vascular grafts.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"125 S179","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of Endothelial Cell-Polycaprolactone Interaction through Surface Modification via Aminolysis, Hydrolysis, and a Combined Approach\",\"authors\":\"Femke Bellen, Elisa Carbone, Pieter Baatsen, E. A. Jones, F. Kabirian, Ruth Heying\",\"doi\":\"10.1155/2023/5590725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polycaprolactone (PCL) is a promising material for the fabrication of alternatives to autologous grafts used in coronary bypass surgery. PCL biodegrades over time, allowing cells to infiltrate the polymeric matrix, replacing the biodegrading graft, and creating a fully functional vessel constituted of autologous tissue. However, the high hydrophobicity of PCL is associated with poor cell affinity. Surface modification of PCL can increase this cell affinity, making PCL an improved scaffold material for acellular vascular grafts. In this study, the surface of PCL films was modified by hydrolysis, aminolysis, and the combination thereof to introduce carboxyl, hydroxyl, and amino groups on the surface. Only the hydrolyzed films exhibited a significant increase in their hydrophilicity, although further testing showed that all aminolysis conditions had amino groups on the surface. Furthermore, in vitro experiments with human umbilical endothelial cells (HUVECs) were performed to assess changes in cell affinity for PCL due to the surface treatments. PCL treated with sodium hydroxide (NaOH), a hydrolysis reaction, showed a significant increase in endothelial cell adhesion after 24 hours with a significant increase in cell survival after 72 hours. Thus, NaOH treatment improves the biocompatibility and endothelialization of PCL, creating a competent candidate for artificial, acellular, biodegradable vascular grafts.\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":\"125 S179\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5590725\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/5590725","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Improvement of Endothelial Cell-Polycaprolactone Interaction through Surface Modification via Aminolysis, Hydrolysis, and a Combined Approach
Polycaprolactone (PCL) is a promising material for the fabrication of alternatives to autologous grafts used in coronary bypass surgery. PCL biodegrades over time, allowing cells to infiltrate the polymeric matrix, replacing the biodegrading graft, and creating a fully functional vessel constituted of autologous tissue. However, the high hydrophobicity of PCL is associated with poor cell affinity. Surface modification of PCL can increase this cell affinity, making PCL an improved scaffold material for acellular vascular grafts. In this study, the surface of PCL films was modified by hydrolysis, aminolysis, and the combination thereof to introduce carboxyl, hydroxyl, and amino groups on the surface. Only the hydrolyzed films exhibited a significant increase in their hydrophilicity, although further testing showed that all aminolysis conditions had amino groups on the surface. Furthermore, in vitro experiments with human umbilical endothelial cells (HUVECs) were performed to assess changes in cell affinity for PCL due to the surface treatments. PCL treated with sodium hydroxide (NaOH), a hydrolysis reaction, showed a significant increase in endothelial cell adhesion after 24 hours with a significant increase in cell survival after 72 hours. Thus, NaOH treatment improves the biocompatibility and endothelialization of PCL, creating a competent candidate for artificial, acellular, biodegradable vascular grafts.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.