肌张力障碍网络的功能和功能障碍:对后天性和孤立性肌张力障碍神经回路的探索

Dystonia Pub Date : 2023-12-13 DOI:10.3389/dyst.2023.11805
Jason S. Gill, Megan X. Nguyen, Mariam Hull, Meike E. van der Heijden, Ken Nguyen, Sruthi P. Thomas, R. Sillitoe
{"title":"肌张力障碍网络的功能和功能障碍:对后天性和孤立性肌张力障碍神经回路的探索","authors":"Jason S. Gill, Megan X. Nguyen, Mariam Hull, Meike E. van der Heijden, Ken Nguyen, Sruthi P. Thomas, R. Sillitoe","doi":"10.3389/dyst.2023.11805","DOIUrl":null,"url":null,"abstract":"Dystonia is a highly prevalent movement disorder that can manifest at any time across the lifespan. An increasing number of investigations have tied this disorder to dysfunction of a broad “dystonia network” encompassing the cerebellum, thalamus, basal ganglia, and cortex. However, pinpointing how dysfunction of the various anatomic components of the network produces the wide variety of dystonia presentations across etiologies remains a difficult problem. In this review, a discussion of functional network findings in non-mendelian etiologies of dystonia is undertaken. Initially acquired etiologies of dystonia and how lesion location leads to alterations in network function are explored, first through an examination of cerebral palsy, in which early brain injury may lead to dystonic/dyskinetic forms of the movement disorder. The discussion of acquired etiologies then continues with an evaluation of the literature covering dystonia resulting from focal lesions followed by the isolated focal dystonias, both idiopathic and task dependent. Next, how the dystonia network responds to therapeutic interventions, from the “geste antagoniste” or “sensory trick” to botulinum toxin and deep brain stimulation, is covered with an eye towards finding similarities in network responses with effective treatment. Finally, an examination of how focal network disruptions in mouse models has informed our understanding of the circuits involved in dystonia is provided. Together, this article aims to offer a synthesis of the literature examining dystonia from the perspective of brain networks and it provides grounding for the perspective of dystonia as disorder of network function.","PeriodicalId":72853,"journal":{"name":"Dystonia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Function and dysfunction of the dystonia network: an exploration of neural circuits that underlie the acquired and isolated dystonias\",\"authors\":\"Jason S. Gill, Megan X. Nguyen, Mariam Hull, Meike E. van der Heijden, Ken Nguyen, Sruthi P. Thomas, R. Sillitoe\",\"doi\":\"10.3389/dyst.2023.11805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dystonia is a highly prevalent movement disorder that can manifest at any time across the lifespan. An increasing number of investigations have tied this disorder to dysfunction of a broad “dystonia network” encompassing the cerebellum, thalamus, basal ganglia, and cortex. However, pinpointing how dysfunction of the various anatomic components of the network produces the wide variety of dystonia presentations across etiologies remains a difficult problem. In this review, a discussion of functional network findings in non-mendelian etiologies of dystonia is undertaken. Initially acquired etiologies of dystonia and how lesion location leads to alterations in network function are explored, first through an examination of cerebral palsy, in which early brain injury may lead to dystonic/dyskinetic forms of the movement disorder. The discussion of acquired etiologies then continues with an evaluation of the literature covering dystonia resulting from focal lesions followed by the isolated focal dystonias, both idiopathic and task dependent. Next, how the dystonia network responds to therapeutic interventions, from the “geste antagoniste” or “sensory trick” to botulinum toxin and deep brain stimulation, is covered with an eye towards finding similarities in network responses with effective treatment. Finally, an examination of how focal network disruptions in mouse models has informed our understanding of the circuits involved in dystonia is provided. Together, this article aims to offer a synthesis of the literature examining dystonia from the perspective of brain networks and it provides grounding for the perspective of dystonia as disorder of network function.\",\"PeriodicalId\":72853,\"journal\":{\"name\":\"Dystonia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dystonia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/dyst.2023.11805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dystonia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/dyst.2023.11805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肌张力障碍是一种发病率很高的运动障碍疾病,可在人一生中的任何时候出现。越来越多的研究将这种疾病与包括小脑、丘脑、基底节和皮层在内的广泛 "肌张力障碍网络 "的功能障碍联系起来。然而,要精确定位该网络各解剖组成部分的功能障碍是如何导致不同病因引起的各种肌张力障碍表现的,仍然是一个难题。在这篇综述中,我们将讨论肌张力障碍非腱鞘炎病因中的功能网络发现。首先探讨了肌张力障碍的获得性病因以及病变位置如何导致网络功能的改变,并对脑瘫进行了研究,因为早期脑损伤可能导致肌张力障碍/运动障碍。然后,继续讨论获得性病因,评估有关病灶病变导致的肌张力障碍的文献,接着是孤立的病灶性肌张力障碍,包括特发性和任务依赖性两种。接着,研究肌张力障碍网络如何对治疗干预做出反应,从 "拮抗手势 "或 "感觉技巧 "到肉毒毒素和脑深部刺激,着眼于发现网络反应与有效治疗的相似之处。最后,文章还探讨了小鼠模型中的局灶性网络破坏如何帮助我们了解肌张力障碍所涉及的回路。总之,本文旨在对从大脑网络角度研究肌张力障碍的文献进行综述,并为将肌张力障碍视为网络功能紊乱的观点提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Function and dysfunction of the dystonia network: an exploration of neural circuits that underlie the acquired and isolated dystonias
Dystonia is a highly prevalent movement disorder that can manifest at any time across the lifespan. An increasing number of investigations have tied this disorder to dysfunction of a broad “dystonia network” encompassing the cerebellum, thalamus, basal ganglia, and cortex. However, pinpointing how dysfunction of the various anatomic components of the network produces the wide variety of dystonia presentations across etiologies remains a difficult problem. In this review, a discussion of functional network findings in non-mendelian etiologies of dystonia is undertaken. Initially acquired etiologies of dystonia and how lesion location leads to alterations in network function are explored, first through an examination of cerebral palsy, in which early brain injury may lead to dystonic/dyskinetic forms of the movement disorder. The discussion of acquired etiologies then continues with an evaluation of the literature covering dystonia resulting from focal lesions followed by the isolated focal dystonias, both idiopathic and task dependent. Next, how the dystonia network responds to therapeutic interventions, from the “geste antagoniste” or “sensory trick” to botulinum toxin and deep brain stimulation, is covered with an eye towards finding similarities in network responses with effective treatment. Finally, an examination of how focal network disruptions in mouse models has informed our understanding of the circuits involved in dystonia is provided. Together, this article aims to offer a synthesis of the literature examining dystonia from the perspective of brain networks and it provides grounding for the perspective of dystonia as disorder of network function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信