{"title":"关于六、七和九立方体的广义和","authors":"Boaz Simatwo Kimtai, Lao Hussein Mude","doi":"10.51867/scimundi.3.1.14","DOIUrl":null,"url":null,"abstract":"Let u1, u2, u3,・・・ un be integers such that un − un−1 = un−1 − un−2 = ・ ・ ・ = a2 − a1 = d. In this article, the study of sums of cube in arithmetic progression is discussed. In particular, the study develops and introduces some generalized results on sums of six, seven and nine cube for any arbitrary integers in arithmetic sequences. The method of study involves analogy grounded on integer decomposition and factorization. The result in this study will prove the existing results on sums of cubes.","PeriodicalId":473139,"journal":{"name":"Science Mundi","volume":"92 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Generalized Sums of Six, Seven and Nine Cube\",\"authors\":\"Boaz Simatwo Kimtai, Lao Hussein Mude\",\"doi\":\"10.51867/scimundi.3.1.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let u1, u2, u3,・・・ un be integers such that un − un−1 = un−1 − un−2 = ・ ・ ・ = a2 − a1 = d. In this article, the study of sums of cube in arithmetic progression is discussed. In particular, the study develops and introduces some generalized results on sums of six, seven and nine cube for any arbitrary integers in arithmetic sequences. The method of study involves analogy grounded on integer decomposition and factorization. The result in this study will prove the existing results on sums of cubes.\",\"PeriodicalId\":473139,\"journal\":{\"name\":\"Science Mundi\",\"volume\":\"92 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Mundi\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.51867/scimundi.3.1.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Mundi","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.51867/scimundi.3.1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 u1,u2,u3,・・・ un 是整数,使得 un - un-1 = un-1 - un-2 = ・ ・ = a2 - a1 = d。本文将讨论算术级数中的立方体之和的研究。特别是,研究对算术级数中任意整数的六次方、七次方和九次方的总和发展和引入了一些广义的结果。研究方法涉及以整数分解和因式分解为基础的类比。本研究的结果将证明关于立方体之和的现有结果。
Let u1, u2, u3,・・・ un be integers such that un − un−1 = un−1 − un−2 = ・ ・ ・ = a2 − a1 = d. In this article, the study of sums of cube in arithmetic progression is discussed. In particular, the study develops and introduces some generalized results on sums of six, seven and nine cube for any arbitrary integers in arithmetic sequences. The method of study involves analogy grounded on integer decomposition and factorization. The result in this study will prove the existing results on sums of cubes.