关于六、七和九立方体的广义和

Boaz Simatwo Kimtai, Lao Hussein Mude
{"title":"关于六、七和九立方体的广义和","authors":"Boaz Simatwo Kimtai, Lao Hussein Mude","doi":"10.51867/scimundi.3.1.14","DOIUrl":null,"url":null,"abstract":"Let u1, u2, u3,・・・ un be integers such that un − un−1 = un−1 − un−2 = ・ ・ ・ = a2 − a1 = d. In this article, the study of sums of cube in arithmetic progression is discussed. In particular, the study develops and introduces some generalized results on sums of six, seven and nine cube for any arbitrary integers in arithmetic sequences. The method of study involves analogy grounded on integer decomposition and factorization. The result in this study will prove the existing results on sums of cubes.","PeriodicalId":473139,"journal":{"name":"Science Mundi","volume":"92 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Generalized Sums of Six, Seven and Nine Cube\",\"authors\":\"Boaz Simatwo Kimtai, Lao Hussein Mude\",\"doi\":\"10.51867/scimundi.3.1.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let u1, u2, u3,・・・ un be integers such that un − un−1 = un−1 − un−2 = ・ ・ ・ = a2 − a1 = d. In this article, the study of sums of cube in arithmetic progression is discussed. In particular, the study develops and introduces some generalized results on sums of six, seven and nine cube for any arbitrary integers in arithmetic sequences. The method of study involves analogy grounded on integer decomposition and factorization. The result in this study will prove the existing results on sums of cubes.\",\"PeriodicalId\":473139,\"journal\":{\"name\":\"Science Mundi\",\"volume\":\"92 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Mundi\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.51867/scimundi.3.1.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Mundi","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.51867/scimundi.3.1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 u1,u2,u3,・・・ un 是整数,使得 un - un-1 = un-1 - un-2 = ・ ・ = a2 - a1 = d。本文将讨论算术级数中的立方体之和的研究。特别是,研究对算术级数中任意整数的六次方、七次方和九次方的总和发展和引入了一些广义的结果。研究方法涉及以整数分解和因式分解为基础的类比。本研究的结果将证明关于立方体之和的现有结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Generalized Sums of Six, Seven and Nine Cube
Let u1, u2, u3,・・・ un be integers such that un − un−1 = un−1 − un−2 = ・ ・ ・ = a2 − a1 = d. In this article, the study of sums of cube in arithmetic progression is discussed. In particular, the study develops and introduces some generalized results on sums of six, seven and nine cube for any arbitrary integers in arithmetic sequences. The method of study involves analogy grounded on integer decomposition and factorization. The result in this study will prove the existing results on sums of cubes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信