单个细胞外囊泡的光学成像:最新进展与前景

Bochen Ma, Li Li, Yuting Bao, Liang Yuan, Songlin Liu, Liqing Qi, Sihui Tong, Yating Xiao, Lubin Qi, Xiaohong Fang* and Yifei Jiang*, 
{"title":"单个细胞外囊泡的光学成像:最新进展与前景","authors":"Bochen Ma,&nbsp;Li Li,&nbsp;Yuting Bao,&nbsp;Liang Yuan,&nbsp;Songlin Liu,&nbsp;Liqing Qi,&nbsp;Sihui Tong,&nbsp;Yating Xiao,&nbsp;Lubin Qi,&nbsp;Xiaohong Fang* and Yifei Jiang*,&nbsp;","doi":"10.1021/cbmi.3c00095","DOIUrl":null,"url":null,"abstract":"<p >Extracellular vesicles (EVs) are small, membrane-bound structures released by various cell types into the extracellular environment, which play a crucial role in intercellular communication and the transfer of biomolecules between cells. Given their functional significance, there are intense research interests to use EVs as disease markers and drug carriers. However, EVs characterization is greatly hindered by the small size, the low biomolecule payload, and the high level of heterogeneity. To address these challenges, researchers have adopted sensitive microscopic methods such as single-molecule fluorescence imaging, single-particle dark-field imaging, surface-enhanced Raman scattering, and surface plasmon resonance imaging for single EV analysis. These techniques can detect signals from individual EVs, enabling a detailed study of the heterogeneity. Analysis of EVs cargo has provided insights into the protein/nucleic acid expression and enabled subgroup differentiation. Superresolution mapping has visualized EVs structures, and single EV tracking has offered insights into their release and uptake mechanisms. In this review, we will summarize the recent advances in optical imaging of single EVs, including the biomarkers used for EV labeling, the performance of the reported microscopic methods, and their biological findings. Finally, we will address the limitations of the existing methods and outline prospects for future development in this field.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 1","pages":"27–46"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00095","citationCount":"0","resultStr":"{\"title\":\"Optical Imaging of Single Extracellular Vesicles: Recent Progress and Prospects\",\"authors\":\"Bochen Ma,&nbsp;Li Li,&nbsp;Yuting Bao,&nbsp;Liang Yuan,&nbsp;Songlin Liu,&nbsp;Liqing Qi,&nbsp;Sihui Tong,&nbsp;Yating Xiao,&nbsp;Lubin Qi,&nbsp;Xiaohong Fang* and Yifei Jiang*,&nbsp;\",\"doi\":\"10.1021/cbmi.3c00095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Extracellular vesicles (EVs) are small, membrane-bound structures released by various cell types into the extracellular environment, which play a crucial role in intercellular communication and the transfer of biomolecules between cells. Given their functional significance, there are intense research interests to use EVs as disease markers and drug carriers. However, EVs characterization is greatly hindered by the small size, the low biomolecule payload, and the high level of heterogeneity. To address these challenges, researchers have adopted sensitive microscopic methods such as single-molecule fluorescence imaging, single-particle dark-field imaging, surface-enhanced Raman scattering, and surface plasmon resonance imaging for single EV analysis. These techniques can detect signals from individual EVs, enabling a detailed study of the heterogeneity. Analysis of EVs cargo has provided insights into the protein/nucleic acid expression and enabled subgroup differentiation. Superresolution mapping has visualized EVs structures, and single EV tracking has offered insights into their release and uptake mechanisms. In this review, we will summarize the recent advances in optical imaging of single EVs, including the biomarkers used for EV labeling, the performance of the reported microscopic methods, and their biological findings. Finally, we will address the limitations of the existing methods and outline prospects for future development in this field.</p>\",\"PeriodicalId\":53181,\"journal\":{\"name\":\"Chemical & Biomedical Imaging\",\"volume\":\"2 1\",\"pages\":\"27–46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00095\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical & Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/cbmi.3c00095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.3c00095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞外囊泡(EVs)是由各种细胞释放到细胞外环境中的小型膜结合结构,在细胞间通信和细胞间生物分子转移中发挥着至关重要的作用。鉴于 EVs 的重要功能,将其用作疾病标志物和药物载体的研究兴趣十分浓厚。然而,EVs 体积小、生物大分子载量低、异质性强,这些因素极大地阻碍了对其进行表征。为了应对这些挑战,研究人员采用了敏感的显微方法,如单分子荧光成像、单颗粒暗场成像、表面增强拉曼散射和表面等离子体共振成像,来分析单个 EV。这些技术可以检测单个 EV 的信号,从而对其异质性进行详细研究。对 EVs 货物的分析有助于深入了解蛋白质/核酸的表达,并实现亚群分化。超分辨率制图可将EVs结构可视化,单个EVs追踪可深入了解其释放和吸收机制。在这篇综述中,我们将总结单个EV光学成像的最新进展,包括用于EV标记的生物标记物、已报道的显微方法的性能及其生物学发现。最后,我们将讨论现有方法的局限性,并概述该领域的未来发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optical Imaging of Single Extracellular Vesicles: Recent Progress and Prospects

Optical Imaging of Single Extracellular Vesicles: Recent Progress and Prospects

Extracellular vesicles (EVs) are small, membrane-bound structures released by various cell types into the extracellular environment, which play a crucial role in intercellular communication and the transfer of biomolecules between cells. Given their functional significance, there are intense research interests to use EVs as disease markers and drug carriers. However, EVs characterization is greatly hindered by the small size, the low biomolecule payload, and the high level of heterogeneity. To address these challenges, researchers have adopted sensitive microscopic methods such as single-molecule fluorescence imaging, single-particle dark-field imaging, surface-enhanced Raman scattering, and surface plasmon resonance imaging for single EV analysis. These techniques can detect signals from individual EVs, enabling a detailed study of the heterogeneity. Analysis of EVs cargo has provided insights into the protein/nucleic acid expression and enabled subgroup differentiation. Superresolution mapping has visualized EVs structures, and single EV tracking has offered insights into their release and uptake mechanisms. In this review, we will summarize the recent advances in optical imaging of single EVs, including the biomarkers used for EV labeling, the performance of the reported microscopic methods, and their biological findings. Finally, we will address the limitations of the existing methods and outline prospects for future development in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical & Biomedical Imaging
Chemical & Biomedical Imaging 化学与生物成像-
CiteScore
1.00
自引率
0.00%
发文量
0
期刊介绍: Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信