Niaz Muhammad, Faisal Khan, Basharat Ullah, Baheej Alghamdi
{"title":"电动汽车用非对称内部永磁同步机的性能分析和优化设计","authors":"Niaz Muhammad, Faisal Khan, Basharat Ullah, Baheej Alghamdi","doi":"10.1049/elp2.12402","DOIUrl":null,"url":null,"abstract":"<p>A novel asymmetric delta-type and Spoke-type interior permanent magnet synchronous machine (ASD-IPM) is proposed for electric vehicles (EVs) application that uses the magnetic field shifting technique to maximise the average torque and lessen torque ripples. The proposed ASD-IPM is deduced from the conventional asymmetric spoke and V-shape IPM by attaching additional asymmetric flux barriers (AFB) to the left side of the spoke-type PMs and to the other side of the delta-type PMs. This configuration helps in reducing the leakage flux and achieving good flux concentration. The proposed design is optimised through a Genetic Algorithm (GA) to investigate the electromagnetic performances at no-load and on-load conditions. Also, the efficiency maps of both the proposed design and conventional design are analysed and compared. The results show that the proposed ASD-AIPM has superior efficiency and a favorable torque profile, making it a suitable choice for electric vehicle applications. Furthermore, the proposed design is rescaled to the Toyota Prius 2010 design, with the only change in the slot/pole pair combination due to the presence of spoke-PMs in the proposed design. The proposed ASD-IPM achieves 7% higher torque than the existing Toyota Prius 2010 model. The efficiency maps of the rescaled design are also analysed and compared.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12402","citationCount":"0","resultStr":"{\"title\":\"Performance analysis and design optimization of asymmetric interior permanent magnet synchronous machine for electric vehicles applications\",\"authors\":\"Niaz Muhammad, Faisal Khan, Basharat Ullah, Baheej Alghamdi\",\"doi\":\"10.1049/elp2.12402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A novel asymmetric delta-type and Spoke-type interior permanent magnet synchronous machine (ASD-IPM) is proposed for electric vehicles (EVs) application that uses the magnetic field shifting technique to maximise the average torque and lessen torque ripples. The proposed ASD-IPM is deduced from the conventional asymmetric spoke and V-shape IPM by attaching additional asymmetric flux barriers (AFB) to the left side of the spoke-type PMs and to the other side of the delta-type PMs. This configuration helps in reducing the leakage flux and achieving good flux concentration. The proposed design is optimised through a Genetic Algorithm (GA) to investigate the electromagnetic performances at no-load and on-load conditions. Also, the efficiency maps of both the proposed design and conventional design are analysed and compared. The results show that the proposed ASD-AIPM has superior efficiency and a favorable torque profile, making it a suitable choice for electric vehicle applications. Furthermore, the proposed design is rescaled to the Toyota Prius 2010 design, with the only change in the slot/pole pair combination due to the presence of spoke-PMs in the proposed design. The proposed ASD-IPM achieves 7% higher torque than the existing Toyota Prius 2010 model. The efficiency maps of the rescaled design are also analysed and compared.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12402\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12402\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12402","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Performance analysis and design optimization of asymmetric interior permanent magnet synchronous machine for electric vehicles applications
A novel asymmetric delta-type and Spoke-type interior permanent magnet synchronous machine (ASD-IPM) is proposed for electric vehicles (EVs) application that uses the magnetic field shifting technique to maximise the average torque and lessen torque ripples. The proposed ASD-IPM is deduced from the conventional asymmetric spoke and V-shape IPM by attaching additional asymmetric flux barriers (AFB) to the left side of the spoke-type PMs and to the other side of the delta-type PMs. This configuration helps in reducing the leakage flux and achieving good flux concentration. The proposed design is optimised through a Genetic Algorithm (GA) to investigate the electromagnetic performances at no-load and on-load conditions. Also, the efficiency maps of both the proposed design and conventional design are analysed and compared. The results show that the proposed ASD-AIPM has superior efficiency and a favorable torque profile, making it a suitable choice for electric vehicle applications. Furthermore, the proposed design is rescaled to the Toyota Prius 2010 design, with the only change in the slot/pole pair combination due to the presence of spoke-PMs in the proposed design. The proposed ASD-IPM achieves 7% higher torque than the existing Toyota Prius 2010 model. The efficiency maps of the rescaled design are also analysed and compared.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.