希尔伯特空间线性约束条件下二次编程问题最优值的定向可微分性

Văn Đồng Vũ, Huyen Pham Thi Thanh, Thang Le Anh
{"title":"希尔伯特空间线性约束条件下二次编程问题最优值的定向可微分性","authors":"Văn Đồng Vũ, Huyen Pham Thi Thanh, Thang Le Anh","doi":"10.51453/2354-1431/2023/1016","DOIUrl":null,"url":null,"abstract":"We investigate the first-order directional differentiability of the optimal value function in parametric quadratic programming problems under linear constraints in Hilbert spaces. We derive an explicit formula for computing the directional derivative of the optimal value function in cases where the quadratic part of the objective function is in Legendre form.","PeriodicalId":158754,"journal":{"name":"SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY","volume":"52 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIRECTIONAL DIFFERENTIABILITY OF THE OPTIMAL VALUE IN QUADRATIC PROGRAMMING PROBLEMS UNDER LINEAR CONSTRAINTS ON HILBERT SPACES\",\"authors\":\"Văn Đồng Vũ, Huyen Pham Thi Thanh, Thang Le Anh\",\"doi\":\"10.51453/2354-1431/2023/1016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the first-order directional differentiability of the optimal value function in parametric quadratic programming problems under linear constraints in Hilbert spaces. We derive an explicit formula for computing the directional derivative of the optimal value function in cases where the quadratic part of the objective function is in Legendre form.\",\"PeriodicalId\":158754,\"journal\":{\"name\":\"SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY\",\"volume\":\"52 37\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51453/2354-1431/2023/1016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51453/2354-1431/2023/1016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了希尔伯特空间线性约束下参数二次编程问题中最优值函数的一阶方向可微分性。在目标函数的二次部分为 Legendre 形式的情况下,我们得出了计算最优值函数方向导数的明确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DIRECTIONAL DIFFERENTIABILITY OF THE OPTIMAL VALUE IN QUADRATIC PROGRAMMING PROBLEMS UNDER LINEAR CONSTRAINTS ON HILBERT SPACES
We investigate the first-order directional differentiability of the optimal value function in parametric quadratic programming problems under linear constraints in Hilbert spaces. We derive an explicit formula for computing the directional derivative of the optimal value function in cases where the quadratic part of the objective function is in Legendre form.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信