{"title":"希尔伯特空间线性约束条件下二次编程问题最优值的定向可微分性","authors":"Văn Đồng Vũ, Huyen Pham Thi Thanh, Thang Le Anh","doi":"10.51453/2354-1431/2023/1016","DOIUrl":null,"url":null,"abstract":"We investigate the first-order directional differentiability of the optimal value function in parametric quadratic programming problems under linear constraints in Hilbert spaces. We derive an explicit formula for computing the directional derivative of the optimal value function in cases where the quadratic part of the objective function is in Legendre form.","PeriodicalId":158754,"journal":{"name":"SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY","volume":"52 37","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIRECTIONAL DIFFERENTIABILITY OF THE OPTIMAL VALUE IN QUADRATIC PROGRAMMING PROBLEMS UNDER LINEAR CONSTRAINTS ON HILBERT SPACES\",\"authors\":\"Văn Đồng Vũ, Huyen Pham Thi Thanh, Thang Le Anh\",\"doi\":\"10.51453/2354-1431/2023/1016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the first-order directional differentiability of the optimal value function in parametric quadratic programming problems under linear constraints in Hilbert spaces. We derive an explicit formula for computing the directional derivative of the optimal value function in cases where the quadratic part of the objective function is in Legendre form.\",\"PeriodicalId\":158754,\"journal\":{\"name\":\"SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY\",\"volume\":\"52 37\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51453/2354-1431/2023/1016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51453/2354-1431/2023/1016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DIRECTIONAL DIFFERENTIABILITY OF THE OPTIMAL VALUE IN QUADRATIC PROGRAMMING PROBLEMS UNDER LINEAR CONSTRAINTS ON HILBERT SPACES
We investigate the first-order directional differentiability of the optimal value function in parametric quadratic programming problems under linear constraints in Hilbert spaces. We derive an explicit formula for computing the directional derivative of the optimal value function in cases where the quadratic part of the objective function is in Legendre form.