利用邻近点进行鲁棒姿势图优化

IF 0.9 Q4 ROBOTICS
Y. Tazaki, Kotaro Wada, Hikaru Nagano, Yasutoshi Yokokohji
{"title":"利用邻近点进行鲁棒姿势图优化","authors":"Y. Tazaki, Kotaro Wada, Hikaru Nagano, Yasutoshi Yokokohji","doi":"10.20965/jrm.2023.p1480","DOIUrl":null,"url":null,"abstract":"This paper proposes a robust posegraph optimization (PGO) method for posegraphs with keypoints. In the conventional PGO formulation, a loop constraint is defined between a pair of nodes, whereas in the proposed method, it is defined between a pair of keypoints. In this manner, robust PGO based on switch variables can be realized in a more fine-grained manner. Loop constraint is defined based on the unique geometric property of proximity point, and implemented as a new edge type of the g2o solver. The proposed method is compared with other robust PGO methods using real world data recorded in Nakanoshima Robot Challenge 2021.","PeriodicalId":51661,"journal":{"name":"Journal of Robotics and Mechatronics","volume":"05 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Posegraph Optimization Using Proximity Points\",\"authors\":\"Y. Tazaki, Kotaro Wada, Hikaru Nagano, Yasutoshi Yokokohji\",\"doi\":\"10.20965/jrm.2023.p1480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a robust posegraph optimization (PGO) method for posegraphs with keypoints. In the conventional PGO formulation, a loop constraint is defined between a pair of nodes, whereas in the proposed method, it is defined between a pair of keypoints. In this manner, robust PGO based on switch variables can be realized in a more fine-grained manner. Loop constraint is defined based on the unique geometric property of proximity point, and implemented as a new edge type of the g2o solver. The proposed method is compared with other robust PGO methods using real world data recorded in Nakanoshima Robot Challenge 2021.\",\"PeriodicalId\":51661,\"journal\":{\"name\":\"Journal of Robotics and Mechatronics\",\"volume\":\"05 2\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics and Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jrm.2023.p1480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种针对有关键点的姿势图的鲁棒姿势图优化(PGO)方法。在传统的 PGO 方法中,循环约束是在一对节点之间定义的,而在本文提出的方法中,循环约束是在一对关键点之间定义的。通过这种方式,基于开关变量的稳健 PGO 可以以更精细的方式实现。循环约束是根据临近点的独特几何特性定义的,并作为 g2o 求解器的一种新边缘类型来实现。利用 2021 年中之岛机器人挑战赛中记录的真实数据,将所提出的方法与其他鲁棒 PGO 方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Posegraph Optimization Using Proximity Points
This paper proposes a robust posegraph optimization (PGO) method for posegraphs with keypoints. In the conventional PGO formulation, a loop constraint is defined between a pair of nodes, whereas in the proposed method, it is defined between a pair of keypoints. In this manner, robust PGO based on switch variables can be realized in a more fine-grained manner. Loop constraint is defined based on the unique geometric property of proximity point, and implemented as a new edge type of the g2o solver. The proposed method is compared with other robust PGO methods using real world data recorded in Nakanoshima Robot Challenge 2021.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
36.40%
发文量
134
期刊介绍: First published in 1989, the Journal of Robotics and Mechatronics (JRM) has the longest publication history in the world in this field, publishing a total of over 2,000 works exclusively on robotics and mechatronics from the first number. The Journal publishes academic papers, development reports, reviews, letters, notes, and discussions. The JRM is a peer-reviewed journal in fields such as robotics, mechatronics, automation, and system integration. Its editorial board includes wellestablished researchers and engineers in the field from the world over. The scope of the journal includes any and all topics on robotics and mechatronics. As a key technology in robotics and mechatronics, it includes actuator design, motion control, sensor design, sensor fusion, sensor networks, robot vision, audition, mechanism design, robot kinematics and dynamics, mobile robot, path planning, navigation, SLAM, robot hand, manipulator, nano/micro robot, humanoid, service and home robots, universal design, middleware, human-robot interaction, human interface, networked robotics, telerobotics, ubiquitous robot, learning, and intelligence. The scope also includes applications of robotics and automation, and system integrations in the fields of manufacturing, construction, underwater, space, agriculture, sustainability, energy conservation, ecology, rescue, hazardous environments, safety and security, dependability, medical, and welfare.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信