基于脑电图信号的癫痫自动检测综述

IF 4.8 4区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Qirui Ren, Xiaofan Sun, Xiangqu Fu, Shuaidi Zhang, Yiyang Yuan, Hao Wu, Xiaoran Li, Xinghua Wang, Feng Zhang
{"title":"基于脑电图信号的癫痫自动检测综述","authors":"Qirui Ren, Xiaofan Sun, Xiangqu Fu, Shuaidi Zhang, Yiyang Yuan, Hao Wu, Xiaoran Li, Xinghua Wang, Feng Zhang","doi":"10.1088/1674-4926/44/12/121401","DOIUrl":null,"url":null,"abstract":"Epilepsy is a common neurological disorder that occurs at all ages. Epilepsy not only brings physical pain to patients, but also brings a huge burden to the lives of patients and their families. At present, epilepsy detection is still achieved through the observation of electroencephalography (EEG) by medical staff. However, this process takes a long time and consumes energy, which will create a huge workload to medical staff. Therefore, it is particularly important to realize the automatic detection of epilepsy. This paper introduces, in detail, the overall framework of EEG-based automatic epilepsy identification and the typical methods involved in each step. Aiming at the core modules, that is, signal acquisition analog front end (AFE), feature extraction and classifier selection, method summary and theoretical explanation are carried out. Finally, the future research directions in the field of automatic detection of epilepsy are prospected.","PeriodicalId":17038,"journal":{"name":"Journal of Semiconductors","volume":"67 ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of automatic detection of epilepsy based on EEG signals\",\"authors\":\"Qirui Ren, Xiaofan Sun, Xiangqu Fu, Shuaidi Zhang, Yiyang Yuan, Hao Wu, Xiaoran Li, Xinghua Wang, Feng Zhang\",\"doi\":\"10.1088/1674-4926/44/12/121401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy is a common neurological disorder that occurs at all ages. Epilepsy not only brings physical pain to patients, but also brings a huge burden to the lives of patients and their families. At present, epilepsy detection is still achieved through the observation of electroencephalography (EEG) by medical staff. However, this process takes a long time and consumes energy, which will create a huge workload to medical staff. Therefore, it is particularly important to realize the automatic detection of epilepsy. This paper introduces, in detail, the overall framework of EEG-based automatic epilepsy identification and the typical methods involved in each step. Aiming at the core modules, that is, signal acquisition analog front end (AFE), feature extraction and classifier selection, method summary and theoretical explanation are carried out. Finally, the future research directions in the field of automatic detection of epilepsy are prospected.\",\"PeriodicalId\":17038,\"journal\":{\"name\":\"Journal of Semiconductors\",\"volume\":\"67 \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Semiconductors\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4926/44/12/121401\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Semiconductors","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4926/44/12/121401","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

癫痫是一种常见的神经系统疾病,各年龄段均可发病。癫痫不仅给患者带来身体上的痛苦,也给患者及其家庭带来巨大的生活负担。目前,癫痫的检测仍然是通过医务人员对脑电图(EEG)的观察来实现的。但这一过程耗时耗力,会给医务人员带来巨大的工作量。因此,实现癫痫的自动检测显得尤为重要。本文详细介绍了基于脑电图的癫痫自动识别的整体框架以及各步骤中涉及的典型方法。针对核心模块,即信号采集模拟前端(AFE)、特征提取和分类器选择,进行了方法总结和理论阐述。最后,展望了癫痫自动检测领域未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of automatic detection of epilepsy based on EEG signals
Epilepsy is a common neurological disorder that occurs at all ages. Epilepsy not only brings physical pain to patients, but also brings a huge burden to the lives of patients and their families. At present, epilepsy detection is still achieved through the observation of electroencephalography (EEG) by medical staff. However, this process takes a long time and consumes energy, which will create a huge workload to medical staff. Therefore, it is particularly important to realize the automatic detection of epilepsy. This paper introduces, in detail, the overall framework of EEG-based automatic epilepsy identification and the typical methods involved in each step. Aiming at the core modules, that is, signal acquisition analog front end (AFE), feature extraction and classifier selection, method summary and theoretical explanation are carried out. Finally, the future research directions in the field of automatic detection of epilepsy are prospected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Semiconductors
Journal of Semiconductors PHYSICS, CONDENSED MATTER-
CiteScore
6.70
自引率
9.80%
发文量
119
期刊介绍: Journal of Semiconductors publishes articles that emphasize semiconductor physics, materials, devices, circuits, and related technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信