Museob Jeong, Won Cheol Shin, Yoonsuk Oh, Jungju Lee, Seung Hun Huh, J. Pee, Hyungjo Seo, Ho Jang, Jong-Young Kim
{"title":"汽车制动器产生的气载微粒物质动力学调查:制动盘材料对制动器排放系数的影响","authors":"Museob Jeong, Won Cheol Shin, Yoonsuk Oh, Jungju Lee, Seung Hun Huh, J. Pee, Hyungjo Seo, Ho Jang, Jong-Young Kim","doi":"10.3390/lubricants11120526","DOIUrl":null,"url":null,"abstract":"In this work, we evaluated the impact of disc rotors of gray cast iron (GCI), nitrocarburized (NC), and superhard ceramic-coated (SCC) GCI on the brake wear PM emissions of passenger vehicles using dynamometric measurements. The brake emission factor (BEF) of the SCC was greatly reduced by more than a factor of 1/5 compared with those for the GCI and NC for both low-steel and non-steel friction materials. Surface topological and microstructural analyses confirmed that more severe wear was pronounced for the NC rotor compared with the SCC, as evidenced by large concave pits in the wear tracks. Analysis of the size-classified airborne PM suggests that reduced micron-sized particles, which originated from the GCI disc, were responsible for the lower BEF due to the increased hardness of the SCC.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"53 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamometric Investigation on Airborne Particulate Matter from Automobile Brake: Impact of Disc Materials on Brake Emission Factor\",\"authors\":\"Museob Jeong, Won Cheol Shin, Yoonsuk Oh, Jungju Lee, Seung Hun Huh, J. Pee, Hyungjo Seo, Ho Jang, Jong-Young Kim\",\"doi\":\"10.3390/lubricants11120526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we evaluated the impact of disc rotors of gray cast iron (GCI), nitrocarburized (NC), and superhard ceramic-coated (SCC) GCI on the brake wear PM emissions of passenger vehicles using dynamometric measurements. The brake emission factor (BEF) of the SCC was greatly reduced by more than a factor of 1/5 compared with those for the GCI and NC for both low-steel and non-steel friction materials. Surface topological and microstructural analyses confirmed that more severe wear was pronounced for the NC rotor compared with the SCC, as evidenced by large concave pits in the wear tracks. Analysis of the size-classified airborne PM suggests that reduced micron-sized particles, which originated from the GCI disc, were responsible for the lower BEF due to the increased hardness of the SCC.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"53 2\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants11120526\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants11120526","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Dynamometric Investigation on Airborne Particulate Matter from Automobile Brake: Impact of Disc Materials on Brake Emission Factor
In this work, we evaluated the impact of disc rotors of gray cast iron (GCI), nitrocarburized (NC), and superhard ceramic-coated (SCC) GCI on the brake wear PM emissions of passenger vehicles using dynamometric measurements. The brake emission factor (BEF) of the SCC was greatly reduced by more than a factor of 1/5 compared with those for the GCI and NC for both low-steel and non-steel friction materials. Surface topological and microstructural analyses confirmed that more severe wear was pronounced for the NC rotor compared with the SCC, as evidenced by large concave pits in the wear tracks. Analysis of the size-classified airborne PM suggests that reduced micron-sized particles, which originated from the GCI disc, were responsible for the lower BEF due to the increased hardness of the SCC.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding