A. A. Mohamed, Kirn Zafar, Dhavalkumar Vaidya, Lizzette Salmeron, Ondrea Kanwhen, Yusef Esa, Mohamed K. Kamaludeen
{"title":"基于废水资源回收设施的社区微电网对电网的影响","authors":"A. A. Mohamed, Kirn Zafar, Dhavalkumar Vaidya, Lizzette Salmeron, Ondrea Kanwhen, Yusef Esa, Mohamed K. Kamaludeen","doi":"10.3390/smartcities6060152","DOIUrl":null,"url":null,"abstract":"The overarching goal of this paper is to explore innovative ways to adapt existing urban infrastructure to achieve a greener and more resilient city, specifically on synergies between the power grid, the wastewater treatment system, and community development in low-lying coastal areas. This study addresses the technical feasibility, benefits, and barriers of using wastewater resource recovery facilities (WRRFs) as community-scale microgrids. These microgrids will act as central resilience and community development hubs, enabling the adoption of renewable energy and the provision of ongoing services under emergency conditions. Load flow modeling and analysis were carried out using real network data for a case study in New York City (NYC). The results validate the hypothesis that distributed energy resources (DERs) at WRRFs can play a role in improving grid operation and resiliency.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":"32 2","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grid Impact of Wastewater Resource Recovery Facilities-Based Community Microgrids\",\"authors\":\"A. A. Mohamed, Kirn Zafar, Dhavalkumar Vaidya, Lizzette Salmeron, Ondrea Kanwhen, Yusef Esa, Mohamed K. Kamaludeen\",\"doi\":\"10.3390/smartcities6060152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The overarching goal of this paper is to explore innovative ways to adapt existing urban infrastructure to achieve a greener and more resilient city, specifically on synergies between the power grid, the wastewater treatment system, and community development in low-lying coastal areas. This study addresses the technical feasibility, benefits, and barriers of using wastewater resource recovery facilities (WRRFs) as community-scale microgrids. These microgrids will act as central resilience and community development hubs, enabling the adoption of renewable energy and the provision of ongoing services under emergency conditions. Load flow modeling and analysis were carried out using real network data for a case study in New York City (NYC). The results validate the hypothesis that distributed energy resources (DERs) at WRRFs can play a role in improving grid operation and resiliency.\",\"PeriodicalId\":34482,\"journal\":{\"name\":\"Smart Cities\",\"volume\":\"32 2\",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Cities\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/smartcities6060152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Cities","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/smartcities6060152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Grid Impact of Wastewater Resource Recovery Facilities-Based Community Microgrids
The overarching goal of this paper is to explore innovative ways to adapt existing urban infrastructure to achieve a greener and more resilient city, specifically on synergies between the power grid, the wastewater treatment system, and community development in low-lying coastal areas. This study addresses the technical feasibility, benefits, and barriers of using wastewater resource recovery facilities (WRRFs) as community-scale microgrids. These microgrids will act as central resilience and community development hubs, enabling the adoption of renewable energy and the provision of ongoing services under emergency conditions. Load flow modeling and analysis were carried out using real network data for a case study in New York City (NYC). The results validate the hypothesis that distributed energy resources (DERs) at WRRFs can play a role in improving grid operation and resiliency.
期刊介绍:
Smart Cities (ISSN 2624-6511) provides an advanced forum for the dissemination of information on the science and technology of smart cities, publishing reviews, regular research papers (articles) and communications in all areas of research concerning smart cities. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible, with no restriction on the maximum length of the papers published so that all experimental results can be reproduced.