K. Svennevig, Matthew J. Owen, Michele Citterio, Tove Nielsen, Salik Rosing, Jan Harff, Rudolf Endler, Mathieu Morlighem, E. Rignot
{"title":"西格陵兰 Vaigat 海峡全新世巨型岩崩--对地质灾害的启示","authors":"K. Svennevig, Matthew J. Owen, Michele Citterio, Tove Nielsen, Salik Rosing, Jan Harff, Rudolf Endler, Mathieu Morlighem, E. Rignot","doi":"10.1130/g51234.1","DOIUrl":null,"url":null,"abstract":"Rock avalanche−triggered displacement waves (also termed tsunamis) have recently occurred in Greenland and Alaska, and they illustrate the presence of such hazards in polar regions. To improve understanding of the magnitude of this hazard for these areas, we investigated gigascale subaerial rock avalanches impacting a partially confined water body within the Vaigat strait (western Greenland). We present a new combined subaerial to subaqueous digital elevation model, alongside a new compilation of seismic data, which revealed nine deglacial to Holocene rock avalanche complexes that are between one and two orders of magnitude larger than nearby historical rock avalanches. The three largest complexes have deposit thicknesses up to 300 m, runout distances reaching 19 km, and best-estimate volumes from 1.7 to 8.4 km3. Based on the morphology and the volume−angle of reach relations, it is likely that each complex represents a single or few events, thus making them among the largest displacement wave−generating subaerial to submarine rock avalanches on Earth. We estimated displacement wave magnitude up to 280 m on the opposite shore. The ages of the deposits are poorly constrained but the main rock avalanche activity is referable to early Holocene times. With significant climatic changes predicted in the Arctic, we recommend that hazard assessments account for events not only from the historical record but also those from the recent geological past.","PeriodicalId":12642,"journal":{"name":"Geology","volume":"5 5","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holocene gigascale rock avalanches in Vaigat strait, West Greenland—Implications for geohazard\",\"authors\":\"K. Svennevig, Matthew J. Owen, Michele Citterio, Tove Nielsen, Salik Rosing, Jan Harff, Rudolf Endler, Mathieu Morlighem, E. Rignot\",\"doi\":\"10.1130/g51234.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rock avalanche−triggered displacement waves (also termed tsunamis) have recently occurred in Greenland and Alaska, and they illustrate the presence of such hazards in polar regions. To improve understanding of the magnitude of this hazard for these areas, we investigated gigascale subaerial rock avalanches impacting a partially confined water body within the Vaigat strait (western Greenland). We present a new combined subaerial to subaqueous digital elevation model, alongside a new compilation of seismic data, which revealed nine deglacial to Holocene rock avalanche complexes that are between one and two orders of magnitude larger than nearby historical rock avalanches. The three largest complexes have deposit thicknesses up to 300 m, runout distances reaching 19 km, and best-estimate volumes from 1.7 to 8.4 km3. Based on the morphology and the volume−angle of reach relations, it is likely that each complex represents a single or few events, thus making them among the largest displacement wave−generating subaerial to submarine rock avalanches on Earth. We estimated displacement wave magnitude up to 280 m on the opposite shore. The ages of the deposits are poorly constrained but the main rock avalanche activity is referable to early Holocene times. With significant climatic changes predicted in the Arctic, we recommend that hazard assessments account for events not only from the historical record but also those from the recent geological past.\",\"PeriodicalId\":12642,\"journal\":{\"name\":\"Geology\",\"volume\":\"5 5\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1130/g51234.1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/g51234.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Holocene gigascale rock avalanches in Vaigat strait, West Greenland—Implications for geohazard
Rock avalanche−triggered displacement waves (also termed tsunamis) have recently occurred in Greenland and Alaska, and they illustrate the presence of such hazards in polar regions. To improve understanding of the magnitude of this hazard for these areas, we investigated gigascale subaerial rock avalanches impacting a partially confined water body within the Vaigat strait (western Greenland). We present a new combined subaerial to subaqueous digital elevation model, alongside a new compilation of seismic data, which revealed nine deglacial to Holocene rock avalanche complexes that are between one and two orders of magnitude larger than nearby historical rock avalanches. The three largest complexes have deposit thicknesses up to 300 m, runout distances reaching 19 km, and best-estimate volumes from 1.7 to 8.4 km3. Based on the morphology and the volume−angle of reach relations, it is likely that each complex represents a single or few events, thus making them among the largest displacement wave−generating subaerial to submarine rock avalanches on Earth. We estimated displacement wave magnitude up to 280 m on the opposite shore. The ages of the deposits are poorly constrained but the main rock avalanche activity is referable to early Holocene times. With significant climatic changes predicted in the Arctic, we recommend that hazard assessments account for events not only from the historical record but also those from the recent geological past.
期刊介绍:
Published since 1973, Geology features rapid publication of about 23 refereed short (four-page) papers each month. Articles cover all earth-science disciplines and include new investigations and provocative topics. Professional geologists and university-level students in the earth sciences use this widely read journal to keep up with scientific research trends. The online forum section facilitates author-reader dialog. Includes color and occasional large-format illustrations on oversized loose inserts.