模态谎言上代数的不可还原模块和第一个 KAC-weisfeiler 猜想的超级版本

Bin Shu
{"title":"模态谎言上代数的不可还原模块和第一个 KAC-weisfeiler 猜想的超级版本","authors":"Bin Shu","doi":"10.4153/s0008439523000966","DOIUrl":null,"url":null,"abstract":"Suppose $g=g_0+g_1$ is a finite-dimensional restricted Lie superalgebra over an algebraically closed field $k$ of characteristic $p>2$. In this article, we propose a conjecture for maximal dimensions of irreducible modules over the universal enveloping algebra $U(g)$ of $g$, as a super generalization of the celebrated first Kac-Weisfeiler conjecture. It is demonstrated that the conjecture holds for all basic classical Lie superalgebras and all completely solvable restricted Lie superalgebras. In this process, we investigate irreducible representations of solvable Lie superalgebras.","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"10 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IRREDUCIBLE MODULES OF MODULAR LIE SUPERALGEBRAS AND SUPER VERSION OF THE FIRST KAC-WEISFEILER CONJECTURE\",\"authors\":\"Bin Shu\",\"doi\":\"10.4153/s0008439523000966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose $g=g_0+g_1$ is a finite-dimensional restricted Lie superalgebra over an algebraically closed field $k$ of characteristic $p>2$. In this article, we propose a conjecture for maximal dimensions of irreducible modules over the universal enveloping algebra $U(g)$ of $g$, as a super generalization of the celebrated first Kac-Weisfeiler conjecture. It is demonstrated that the conjecture holds for all basic classical Lie superalgebras and all completely solvable restricted Lie superalgebras. In this process, we investigate irreducible representations of solvable Lie superalgebras.\",\"PeriodicalId\":501184,\"journal\":{\"name\":\"Canadian Mathematical Bulletin\",\"volume\":\"10 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439523000966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439523000966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设 $g=g_0+g_1$ 是特征 $p>2$ 的代数闭域 $k$ 上的有限维有限列超代数。在这篇文章中,我们提出了一个关于$g$的普遍包络代数$U(g)$上不可还原模块最大维数的猜想,作为著名的第一个卡克-魏斯费勒猜想的超广义化。研究证明,该猜想对于所有基本经典李超拉和所有完全可解的受限李超拉都成立。在这一过程中,我们研究了可解李超拉的不可还原表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IRREDUCIBLE MODULES OF MODULAR LIE SUPERALGEBRAS AND SUPER VERSION OF THE FIRST KAC-WEISFEILER CONJECTURE
Suppose $g=g_0+g_1$ is a finite-dimensional restricted Lie superalgebra over an algebraically closed field $k$ of characteristic $p>2$. In this article, we propose a conjecture for maximal dimensions of irreducible modules over the universal enveloping algebra $U(g)$ of $g$, as a super generalization of the celebrated first Kac-Weisfeiler conjecture. It is demonstrated that the conjecture holds for all basic classical Lie superalgebras and all completely solvable restricted Lie superalgebras. In this process, we investigate irreducible representations of solvable Lie superalgebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信