设计逻辑电路的可靠和超低功耗方法

IF 1.2 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Shams Ul Haq, Vijay Kumar Sharma
{"title":"设计逻辑电路的可靠和超低功耗方法","authors":"Shams Ul Haq,&nbsp;Vijay Kumar Sharma","doi":"10.1007/s10470-023-02207-2","DOIUrl":null,"url":null,"abstract":"<div><p>The principal design concern in today’s very large-scale integration (VLSI) industry is power dissipation. Power dissipation in a chip rises reliability issues. Static power dissipation places a bottleneck in scaling down the dimensions and supply voltage of metal oxide semiconductor field effect transistor (MOSFET). Short channel effects (SCEs) put a limit on MOSFET scaling. At the lower technology nodes, the control of the gate over the channel is lost in MOSFET. Fin-shaped field effect transistor (FinFETs) uses multiple gates to gain much electrostatic control over the channel. FinFET not only improves the drive current but also reduces the subthreshold leakage. This paper proposes a novel power-efficient technique for the nanoscale regime. The simulation results are derived using Mentor Graphics at a 16 nm node. The power is reduced by 91.45% and 89.01% in the proposed MOSFET and FinFET-based inverter, respectively. A chain of 5-inverters is designed as a benchmark circuit to check the performance comparisons. In the proposed MOSFET and FinFET-based benchmark circuit, there is a power delay product (PDP) reduction of 80.28%, and 99.87%, respectively. The effect of process voltage and temperature (PVT) variations for the robustness of the technique is also discussed. The proposed technique provides the power-efficient and robustness operation against the variations as compared to the other methods.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliable and ultra-low power approach for designing of logic circuits\",\"authors\":\"Shams Ul Haq,&nbsp;Vijay Kumar Sharma\",\"doi\":\"10.1007/s10470-023-02207-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The principal design concern in today’s very large-scale integration (VLSI) industry is power dissipation. Power dissipation in a chip rises reliability issues. Static power dissipation places a bottleneck in scaling down the dimensions and supply voltage of metal oxide semiconductor field effect transistor (MOSFET). Short channel effects (SCEs) put a limit on MOSFET scaling. At the lower technology nodes, the control of the gate over the channel is lost in MOSFET. Fin-shaped field effect transistor (FinFETs) uses multiple gates to gain much electrostatic control over the channel. FinFET not only improves the drive current but also reduces the subthreshold leakage. This paper proposes a novel power-efficient technique for the nanoscale regime. The simulation results are derived using Mentor Graphics at a 16 nm node. The power is reduced by 91.45% and 89.01% in the proposed MOSFET and FinFET-based inverter, respectively. A chain of 5-inverters is designed as a benchmark circuit to check the performance comparisons. In the proposed MOSFET and FinFET-based benchmark circuit, there is a power delay product (PDP) reduction of 80.28%, and 99.87%, respectively. The effect of process voltage and temperature (PVT) variations for the robustness of the technique is also discussed. The proposed technique provides the power-efficient and robustness operation against the variations as compared to the other methods.</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-023-02207-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-023-02207-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

当今超大规模集成电路(VLSI)行业的主要设计问题是功率耗散。芯片中的功率耗散会引发可靠性问题。静态功率耗散是缩小金属氧化物半导体场效应晶体管(MOSFET)尺寸和电源电压的瓶颈。短沟道效应(SCE)限制了 MOSFET 的扩展。在较低的技术节点上,MOSFET 失去了栅极对沟道的控制。鳍状场效应晶体管(FinFET)使用多个栅极,从而获得对沟道的大量静电控制。FinFET 不仅能提高驱动电流,还能减少阈下漏电。本文提出了一种适用于纳米尺度的新型高能效技术。仿真结果使用 Mentor Graphics 在 16 纳米节点上得出。在所提出的基于 MOSFET 和 FinFET 的逆变器中,功率分别降低了 91.45% 和 89.01%。设计了一个 5 逆变器链作为基准电路,以检查性能比较。在拟议的 MOSFET 和基于 FinFET 的基准电路中,功率延迟积(PDP)分别降低了 80.28% 和 99.87%。此外,还讨论了工艺电压和温度(PVT)变化对该技术稳健性的影响。与其他方法相比,所提出的技术具有高能效和鲁棒性,可应对各种变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reliable and ultra-low power approach for designing of logic circuits

Reliable and ultra-low power approach for designing of logic circuits

The principal design concern in today’s very large-scale integration (VLSI) industry is power dissipation. Power dissipation in a chip rises reliability issues. Static power dissipation places a bottleneck in scaling down the dimensions and supply voltage of metal oxide semiconductor field effect transistor (MOSFET). Short channel effects (SCEs) put a limit on MOSFET scaling. At the lower technology nodes, the control of the gate over the channel is lost in MOSFET. Fin-shaped field effect transistor (FinFETs) uses multiple gates to gain much electrostatic control over the channel. FinFET not only improves the drive current but also reduces the subthreshold leakage. This paper proposes a novel power-efficient technique for the nanoscale regime. The simulation results are derived using Mentor Graphics at a 16 nm node. The power is reduced by 91.45% and 89.01% in the proposed MOSFET and FinFET-based inverter, respectively. A chain of 5-inverters is designed as a benchmark circuit to check the performance comparisons. In the proposed MOSFET and FinFET-based benchmark circuit, there is a power delay product (PDP) reduction of 80.28%, and 99.87%, respectively. The effect of process voltage and temperature (PVT) variations for the robustness of the technique is also discussed. The proposed technique provides the power-efficient and robustness operation against the variations as compared to the other methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analog Integrated Circuits and Signal Processing
Analog Integrated Circuits and Signal Processing 工程技术-工程:电子与电气
CiteScore
0.30
自引率
7.10%
发文量
141
审稿时长
7.3 months
期刊介绍: Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today. A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信