Ming Ying, Xinghua Liu, Yue Zhang, Chongbing Zhang
{"title":"气体箔轴承、迷宫密封件和叶轮对燃料电池汽车离心压缩机临界转速的影响:全面调查","authors":"Ming Ying, Xinghua Liu, Yue Zhang, Chongbing Zhang","doi":"10.3390/lubricants11120532","DOIUrl":null,"url":null,"abstract":"The critical speed is a crucial factor that impacts the stability of high-speed compressors. However, limited research has simultaneously considered the influence of gas foil bearings (GFBs), labyrinth seals, and impellers on critical speed. In this study, we develop a rotordynamic model that incorporates the aerodynamic forces of GFBs, labyrinth seals, and impellers to explore the effects of each component on the critical speed. To validate the developed model, experimental tests are conducted on a centrifugal compressor test bed, and the results exhibit a high level of agreement with the model calculations. By comparing the model calculations that include different components, we comprehensively analyze the influence of each component on the critical speed. The findings reveal that, for centrifugal compressors used in fuel cell vehicles, the rotordynamic coefficients resulting from GFBs are significantly larger than those resulting from impellers and labyrinth seals. Thus, it is reasonable to disregard the aerodynamic forces caused by impellers and labyrinth seals when calculating the critical speed. Furthermore, substituting rigid gas bearings for GFBs as a means to simplify the calculations has only a very slight impact on the results. This study aims to optimize the design process of centrifugal compressors for fuel cell vehicles and offers valuable insights for designing compressors of similar sizes.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"10 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Gas Foil Bearings, Labyrinth Seals, and Impellers on the Critical Speed of Centrifugal Compressors for Fuel Cell Vehicles: A Comprehensive Investigation\",\"authors\":\"Ming Ying, Xinghua Liu, Yue Zhang, Chongbing Zhang\",\"doi\":\"10.3390/lubricants11120532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The critical speed is a crucial factor that impacts the stability of high-speed compressors. However, limited research has simultaneously considered the influence of gas foil bearings (GFBs), labyrinth seals, and impellers on critical speed. In this study, we develop a rotordynamic model that incorporates the aerodynamic forces of GFBs, labyrinth seals, and impellers to explore the effects of each component on the critical speed. To validate the developed model, experimental tests are conducted on a centrifugal compressor test bed, and the results exhibit a high level of agreement with the model calculations. By comparing the model calculations that include different components, we comprehensively analyze the influence of each component on the critical speed. The findings reveal that, for centrifugal compressors used in fuel cell vehicles, the rotordynamic coefficients resulting from GFBs are significantly larger than those resulting from impellers and labyrinth seals. Thus, it is reasonable to disregard the aerodynamic forces caused by impellers and labyrinth seals when calculating the critical speed. Furthermore, substituting rigid gas bearings for GFBs as a means to simplify the calculations has only a very slight impact on the results. This study aims to optimize the design process of centrifugal compressors for fuel cell vehicles and offers valuable insights for designing compressors of similar sizes.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"10 3\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants11120532\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants11120532","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Impact of Gas Foil Bearings, Labyrinth Seals, and Impellers on the Critical Speed of Centrifugal Compressors for Fuel Cell Vehicles: A Comprehensive Investigation
The critical speed is a crucial factor that impacts the stability of high-speed compressors. However, limited research has simultaneously considered the influence of gas foil bearings (GFBs), labyrinth seals, and impellers on critical speed. In this study, we develop a rotordynamic model that incorporates the aerodynamic forces of GFBs, labyrinth seals, and impellers to explore the effects of each component on the critical speed. To validate the developed model, experimental tests are conducted on a centrifugal compressor test bed, and the results exhibit a high level of agreement with the model calculations. By comparing the model calculations that include different components, we comprehensively analyze the influence of each component on the critical speed. The findings reveal that, for centrifugal compressors used in fuel cell vehicles, the rotordynamic coefficients resulting from GFBs are significantly larger than those resulting from impellers and labyrinth seals. Thus, it is reasonable to disregard the aerodynamic forces caused by impellers and labyrinth seals when calculating the critical speed. Furthermore, substituting rigid gas bearings for GFBs as a means to simplify the calculations has only a very slight impact on the results. This study aims to optimize the design process of centrifugal compressors for fuel cell vehicles and offers valuable insights for designing compressors of similar sizes.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding