蒙日安培型数学物理非稳态方程的精确解与还原

А. Д. Полянин
{"title":"蒙日安培型数学物理非稳态方程的精确解与还原","authors":"А. Д. Полянин","doi":"10.26583/vestnik.2023.299","DOIUrl":null,"url":null,"abstract":"Исследуются нелинейные нестационарные уравнения математической физики с тремя независимыми переменными, которые содержат первую производную по времени и квадратичную комбинацию вторых производных по пространственным переменным типа Монжа – Ампера. Отдельные уравнения такого типа встречаются, например, в электронной магнитной гидродинамике и дифференциальной геометрии. В данной работе описано одиннадцатипараметрическое преобразование, сохраняющее вид исследуемого класса нелинейных уравнений. Рассмотрены двумерные и одномерные редукции, приводящие к более простым уравнениям в частных производных с двумя независимыми переменными или обыкновенным дифференциальным уравнениям. Получены автомодельные и другие инвариантные решения. Методами обобщенного разделения переменных построен ряд новых точных решений, многие из которых выражаются через элементарные функции.","PeriodicalId":118070,"journal":{"name":"Вестник НИЯУ МИФИ","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ТОЧНЫЕ РЕШЕНИЯ И РЕДУКЦИИ НЕСТАЦИОНАРНЫХ УРАВНЕНИЙ МАТЕМАТИЧЕСКОЙ ФИЗИКИ ТИПА МОНЖА – АМПЕРА\",\"authors\":\"А. Д. Полянин\",\"doi\":\"10.26583/vestnik.2023.299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Исследуются нелинейные нестационарные уравнения математической физики с тремя независимыми переменными, которые содержат первую производную по времени и квадратичную комбинацию вторых производных по пространственным переменным типа Монжа – Ампера. Отдельные уравнения такого типа встречаются, например, в электронной магнитной гидродинамике и дифференциальной геометрии. В данной работе описано одиннадцатипараметрическое преобразование, сохраняющее вид исследуемого класса нелинейных уравнений. Рассмотрены двумерные и одномерные редукции, приводящие к более простым уравнениям в частных производных с двумя независимыми переменными или обыкновенным дифференциальным уравнениям. Получены автомодельные и другие инвариантные решения. Методами обобщенного разделения переменных построен ряд новых точных решений, многие из которых выражаются через элементарные функции.\",\"PeriodicalId\":118070,\"journal\":{\"name\":\"Вестник НИЯУ МИФИ\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Вестник НИЯУ МИФИ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26583/vestnik.2023.299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Вестник НИЯУ МИФИ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26583/vestnik.2023.299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是数学物理中具有三个独立变量的非线性非稳态方程,其中包含 Monge-Ampere 类型的空间变量上的一阶时间导数和二阶导数的二次组合。例如,在电子磁流体力学和微分几何中就有这种类型的个别方程。在本文中,我们描述了一种保留所研究的非线性方程形式的十一参数变换。我们考虑了二维和一维的还原,从而得出具有两个独立变量的更简单偏导数方程或常微分方程。获得了自动模型和其他不变解。通过广义变量分离的方法,构建了许多新的精确解,其中许多是通过初等函数表达的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ТОЧНЫЕ РЕШЕНИЯ И РЕДУКЦИИ НЕСТАЦИОНАРНЫХ УРАВНЕНИЙ МАТЕМАТИЧЕСКОЙ ФИЗИКИ ТИПА МОНЖА – АМПЕРА
Исследуются нелинейные нестационарные уравнения математической физики с тремя независимыми переменными, которые содержат первую производную по времени и квадратичную комбинацию вторых производных по пространственным переменным типа Монжа – Ампера. Отдельные уравнения такого типа встречаются, например, в электронной магнитной гидродинамике и дифференциальной геометрии. В данной работе описано одиннадцатипараметрическое преобразование, сохраняющее вид исследуемого класса нелинейных уравнений. Рассмотрены двумерные и одномерные редукции, приводящие к более простым уравнениям в частных производных с двумя независимыми переменными или обыкновенным дифференциальным уравнениям. Получены автомодельные и другие инвариантные решения. Методами обобщенного разделения переменных построен ряд новых точных решений, многие из которых выражаются через элементарные функции.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信