{"title":"交通噪声建模和预测中分析模型与机器学习模型的比较","authors":"Bhagwat Singh Chauhan, Naveen Garg, Saurabh Kumar, Chitra Gautam, Gaurav Purohit","doi":"10.1007/s12647-023-00692-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper illustrates the applications of analytical models and machine learning methods to predict the equivalent continuous sound pressure levels (<i>L</i><sub>Aeq</sub>) along with 10-percentile exceeded sound levels (<i>L</i><sub>10</sub>) generated due to road traffic noise based on rigorous noise monitoring conducted at more than 200 locations in Delhi-NCR. Using the measured data, regression, back-propagation neural network, and machine learning models were developed, validated, and tested. The work represents that the developed models are suitable for reliable and accurate predictions of hourly traffic noise levels. A comparative study reports that the machine learning-based model outperforms the classical analytical models. Multiple linear regression models and three machine learning techniques, namely decision trees, random forests, and neural networks, were utilized for developing models that predict the hourly equivalent continuous sound pressure level (<i>L</i><sub>Aeq1h</sub>) and 10-percentile exceeded sound pressure level (<i>L</i><sub>10</sub>). The developed predicted models have been ascertained to show an accuracy up to ± 3 dB(A). The proposed prediction models in the study can serve as a tool for planning noise abatement measures and traffic noise forecasts for the Delhi-NCR region. This study is the first rigorous study of its kind that covers a larger number of areas and zones in Delhi-NCR for assessment and predictions of road traffic noise and also shows an illustrative example of estimating measurement uncertainty in hourly noise measurements as per ISO 1996-2:2017.</p></div>","PeriodicalId":689,"journal":{"name":"MAPAN","volume":"39 2","pages":"397 - 415"},"PeriodicalIF":1.0000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Analytical and Machine Learning Models in Traffic Noise Modeling and Predictions\",\"authors\":\"Bhagwat Singh Chauhan, Naveen Garg, Saurabh Kumar, Chitra Gautam, Gaurav Purohit\",\"doi\":\"10.1007/s12647-023-00692-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper illustrates the applications of analytical models and machine learning methods to predict the equivalent continuous sound pressure levels (<i>L</i><sub>Aeq</sub>) along with 10-percentile exceeded sound levels (<i>L</i><sub>10</sub>) generated due to road traffic noise based on rigorous noise monitoring conducted at more than 200 locations in Delhi-NCR. Using the measured data, regression, back-propagation neural network, and machine learning models were developed, validated, and tested. The work represents that the developed models are suitable for reliable and accurate predictions of hourly traffic noise levels. A comparative study reports that the machine learning-based model outperforms the classical analytical models. Multiple linear regression models and three machine learning techniques, namely decision trees, random forests, and neural networks, were utilized for developing models that predict the hourly equivalent continuous sound pressure level (<i>L</i><sub>Aeq1h</sub>) and 10-percentile exceeded sound pressure level (<i>L</i><sub>10</sub>). The developed predicted models have been ascertained to show an accuracy up to ± 3 dB(A). The proposed prediction models in the study can serve as a tool for planning noise abatement measures and traffic noise forecasts for the Delhi-NCR region. This study is the first rigorous study of its kind that covers a larger number of areas and zones in Delhi-NCR for assessment and predictions of road traffic noise and also shows an illustrative example of estimating measurement uncertainty in hourly noise measurements as per ISO 1996-2:2017.</p></div>\",\"PeriodicalId\":689,\"journal\":{\"name\":\"MAPAN\",\"volume\":\"39 2\",\"pages\":\"397 - 415\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAPAN\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12647-023-00692-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAPAN","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12647-023-00692-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Comparison of Analytical and Machine Learning Models in Traffic Noise Modeling and Predictions
This paper illustrates the applications of analytical models and machine learning methods to predict the equivalent continuous sound pressure levels (LAeq) along with 10-percentile exceeded sound levels (L10) generated due to road traffic noise based on rigorous noise monitoring conducted at more than 200 locations in Delhi-NCR. Using the measured data, regression, back-propagation neural network, and machine learning models were developed, validated, and tested. The work represents that the developed models are suitable for reliable and accurate predictions of hourly traffic noise levels. A comparative study reports that the machine learning-based model outperforms the classical analytical models. Multiple linear regression models and three machine learning techniques, namely decision trees, random forests, and neural networks, were utilized for developing models that predict the hourly equivalent continuous sound pressure level (LAeq1h) and 10-percentile exceeded sound pressure level (L10). The developed predicted models have been ascertained to show an accuracy up to ± 3 dB(A). The proposed prediction models in the study can serve as a tool for planning noise abatement measures and traffic noise forecasts for the Delhi-NCR region. This study is the first rigorous study of its kind that covers a larger number of areas and zones in Delhi-NCR for assessment and predictions of road traffic noise and also shows an illustrative example of estimating measurement uncertainty in hourly noise measurements as per ISO 1996-2:2017.
期刊介绍:
MAPAN-Journal Metrology Society of India is a quarterly publication. It is exclusively devoted to Metrology (Scientific, Industrial or Legal). It has been fulfilling an important need of Metrologists and particularly of quality practitioners by publishing exclusive articles on scientific, industrial and legal metrology.
The journal publishes research communication or technical articles of current interest in measurement science; original work, tutorial or survey papers in any metrology related area; reviews and analytical studies in metrology; case studies on reliability, uncertainty in measurements; and reports and results of intercomparison and proficiency testing.