具有随机噪声的微分延迟方程的均方指数稳定性结果。

Quân Nguyễn Như
{"title":"具有随机噪声的微分延迟方程的均方指数稳定性结果。","authors":"Quân Nguyễn Như","doi":"10.51453/2354-1431/2023/849","DOIUrl":null,"url":null,"abstract":"In the present paper, we aim to study of a class of nonlinear differential equations with stochastic noise. Firstly, we introduce the condition of local Lipschitz and a new non-linear growth condition. Then by applying Lyapunov function and semi-martingale convergence theorem, we prove that the stochastic system under consideration has a unique global solution. Additionally, we also investigate the exponential stability of the mean square.","PeriodicalId":158754,"journal":{"name":"SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A RESULT OF MEAN SQUARE EXPONENTIAL STABILITY FOR DIFFERENTIAL DELAY EQUATIONS WITH STOCHASTIC NOISE.\",\"authors\":\"Quân Nguyễn Như\",\"doi\":\"10.51453/2354-1431/2023/849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we aim to study of a class of nonlinear differential equations with stochastic noise. Firstly, we introduce the condition of local Lipschitz and a new non-linear growth condition. Then by applying Lyapunov function and semi-martingale convergence theorem, we prove that the stochastic system under consideration has a unique global solution. Additionally, we also investigate the exponential stability of the mean square.\",\"PeriodicalId\":158754,\"journal\":{\"name\":\"SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51453/2354-1431/2023/849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51453/2354-1431/2023/849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在研究一类带有随机噪声的非线性微分方程。首先,我们引入了局部 Lipschitz 条件和新的非线性增长条件。然后,通过应用 Lyapunov 函数和半鞅收敛定理,我们证明了所考虑的随机系统具有唯一的全局解。此外,我们还研究了均方的指数稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A RESULT OF MEAN SQUARE EXPONENTIAL STABILITY FOR DIFFERENTIAL DELAY EQUATIONS WITH STOCHASTIC NOISE.
In the present paper, we aim to study of a class of nonlinear differential equations with stochastic noise. Firstly, we introduce the condition of local Lipschitz and a new non-linear growth condition. Then by applying Lyapunov function and semi-martingale convergence theorem, we prove that the stochastic system under consideration has a unique global solution. Additionally, we also investigate the exponential stability of the mean square.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信