微囊藻菌株间资源竞争特征的差异受其微生物组的影响

IF 4.5 Q1 MICROBIOLOGY
mLife Pub Date : 2023-12-18 DOI:10.1002/mlf2.12094
Dylan Baker, Casey Godwin, Muhtamim Khanam, Ashley M. Burtner, Gregory J. Dick, Vincent J. Denef
{"title":"微囊藻菌株间资源竞争特征的差异受其微生物组的影响","authors":"Dylan Baker, Casey Godwin, Muhtamim Khanam, Ashley M. Burtner, Gregory J. Dick, Vincent J. Denef","doi":"10.1002/mlf2.12094","DOIUrl":null,"url":null,"abstract":"Freshwater harmful algal blooms are often dominated by Microcystis, a phylogenetically cohesive group of cyanobacteria marked by extensive genetic and physiological diversity. We have previously shown that this genetic diversity and the presence of a microbiome of heterotrophic bacteria influences competitive interactions with eukaryotic phytoplankton. In this study, we sought to explain these observations by characterizing Monod equation parameters for resource usage (maximum growth rate μmax, half‐saturation value for growth Ks, and quota) as a function of N and P levels for four strains (NIES‐843, PCC 9701, PCC 7806 [WT], and PCC 7806 ΔmcyB) in presence and absence of a microbiome derived from Microcystis isolated from Lake Erie. Results indicated limited differences in maximum growth rates but more pronounced differences in half‐saturation values among Microcystis strains. The largest impact of the microbiome was reducing the minimal nitrogen concentration sustaining growth and reducing half saturation values, with variable results depending on the Microcystis strain. Microcystis strains also differed from each other in their N and P quotas and the extent to which microbiome presence affected them. Our data highlight the importance of the microbiome in altering Microcystis‐intrinsic traits, strain competitive hierarchies, and thus bloom dynamics. As quota, μmax, and Ks are commonly used in models for harmful algal blooms, our data suggest that model improvement may be possible by incorporating genotype dependencies of resource‐use parameters.","PeriodicalId":94145,"journal":{"name":"mLife","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation in resource competition traits among Microcystis strains is affected by their microbiomes\",\"authors\":\"Dylan Baker, Casey Godwin, Muhtamim Khanam, Ashley M. Burtner, Gregory J. Dick, Vincent J. Denef\",\"doi\":\"10.1002/mlf2.12094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Freshwater harmful algal blooms are often dominated by Microcystis, a phylogenetically cohesive group of cyanobacteria marked by extensive genetic and physiological diversity. We have previously shown that this genetic diversity and the presence of a microbiome of heterotrophic bacteria influences competitive interactions with eukaryotic phytoplankton. In this study, we sought to explain these observations by characterizing Monod equation parameters for resource usage (maximum growth rate μmax, half‐saturation value for growth Ks, and quota) as a function of N and P levels for four strains (NIES‐843, PCC 9701, PCC 7806 [WT], and PCC 7806 ΔmcyB) in presence and absence of a microbiome derived from Microcystis isolated from Lake Erie. Results indicated limited differences in maximum growth rates but more pronounced differences in half‐saturation values among Microcystis strains. The largest impact of the microbiome was reducing the minimal nitrogen concentration sustaining growth and reducing half saturation values, with variable results depending on the Microcystis strain. Microcystis strains also differed from each other in their N and P quotas and the extent to which microbiome presence affected them. Our data highlight the importance of the microbiome in altering Microcystis‐intrinsic traits, strain competitive hierarchies, and thus bloom dynamics. As quota, μmax, and Ks are commonly used in models for harmful algal blooms, our data suggest that model improvement may be possible by incorporating genotype dependencies of resource‐use parameters.\",\"PeriodicalId\":94145,\"journal\":{\"name\":\"mLife\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mLife\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1002/mlf2.12094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mLife","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1002/mlf2.12094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

淡水有害藻类水华通常由微囊藻(Microcystis)主导,微囊藻是一个系统发育上具有凝聚力的蓝藻群,具有广泛的遗传和生理多样性。我们以前的研究表明,这种遗传多样性和异养细菌微生物组的存在会影响与真核浮游植物的竞争互动。在本研究中,我们试图通过描述四种菌株(NIES-843、PCC 9701、PCC 7806 [WT]和 PCC 7806 ΔmcyB)的资源利用莫诺方程参数(最大生长速率μmax、生长半饱和值 Ks 和配额)与氮和磷水平的函数关系,来解释这些观察结果。结果表明,微囊藻菌株之间最大生长率的差异有限,但半饱和度值的差异更为明显。微生物组的最大影响是降低了维持生长的最低氮浓度,并降低了半饱和值,但结果因微囊藻菌株而异。微囊藻菌株之间的氮和磷配额以及微生物群的存在对它们的影响程度也各不相同。我们的数据强调了微生物组在改变微囊藻固有特性、菌株竞争等级以及藻华动态方面的重要性。由于配额、μmax 和 Ks 是有害藻华模型中常用的参数,我们的数据表明,将资源利用参数的基因型依赖性纳入模型可以改进模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variation in resource competition traits among Microcystis strains is affected by their microbiomes
Freshwater harmful algal blooms are often dominated by Microcystis, a phylogenetically cohesive group of cyanobacteria marked by extensive genetic and physiological diversity. We have previously shown that this genetic diversity and the presence of a microbiome of heterotrophic bacteria influences competitive interactions with eukaryotic phytoplankton. In this study, we sought to explain these observations by characterizing Monod equation parameters for resource usage (maximum growth rate μmax, half‐saturation value for growth Ks, and quota) as a function of N and P levels for four strains (NIES‐843, PCC 9701, PCC 7806 [WT], and PCC 7806 ΔmcyB) in presence and absence of a microbiome derived from Microcystis isolated from Lake Erie. Results indicated limited differences in maximum growth rates but more pronounced differences in half‐saturation values among Microcystis strains. The largest impact of the microbiome was reducing the minimal nitrogen concentration sustaining growth and reducing half saturation values, with variable results depending on the Microcystis strain. Microcystis strains also differed from each other in their N and P quotas and the extent to which microbiome presence affected them. Our data highlight the importance of the microbiome in altering Microcystis‐intrinsic traits, strain competitive hierarchies, and thus bloom dynamics. As quota, μmax, and Ks are commonly used in models for harmful algal blooms, our data suggest that model improvement may be possible by incorporating genotype dependencies of resource‐use parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信