{"title":"三元 Ag-Eu-Sn 液体合金中的混合焓","authors":"Michael Ivanov, Natalia Usenko, N. Kotova","doi":"10.1515/ijmr-2023-0063","DOIUrl":null,"url":null,"abstract":"Abstract The enthalpies of mixing in liquid alloys of the ternary Ag–Eu–Sn system were determined over a wide range of concentrations by means of isoperibolic calorimetry in the temperature range from 1313 to 1373 K. The partial enthalpies of each component of the ternary system were measured along the following sections: Δ H ̄ Ag ${\\Delta }{\\bar{H}}_{\\text{Ag}}$ along the section with xEu/xSn = 0.28/0.72 up to silver content of about xAg = 0.2 at 1373 K; Δ H ̄ Sn ${\\Delta }{\\bar{H}}_{\\text{Sn}}$ along three sections (xAg/xEu = 0.31/0.69, 0.50/0.50 and 0.70/0.30) up to xSn = 0.35 at 1373 K; Δ H ̄ Eu ${\\Delta }{\\bar{H}}_{\\text{Eu}}$ along the section xAg/xSn = 0.50/0.50 up to xEu = 0.25 at 1313 K. The enthalpies of mixing in the liquid Ag–Eu–Sn alloys show exothermic effects, being more pronounced in the vicinity of the Eu–Sn binary constituent. The minimum value of the integral enthalpy of about −60 kJ mol−1 is observed in the composition region of the congruently melting Eu2Sn phase.","PeriodicalId":14079,"journal":{"name":"International Journal of Materials Research","volume":" 11","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enthalpies of mixing in ternary Ag–Eu–Sn liquid alloys\",\"authors\":\"Michael Ivanov, Natalia Usenko, N. Kotova\",\"doi\":\"10.1515/ijmr-2023-0063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The enthalpies of mixing in liquid alloys of the ternary Ag–Eu–Sn system were determined over a wide range of concentrations by means of isoperibolic calorimetry in the temperature range from 1313 to 1373 K. The partial enthalpies of each component of the ternary system were measured along the following sections: Δ H ̄ Ag ${\\\\Delta }{\\\\bar{H}}_{\\\\text{Ag}}$ along the section with xEu/xSn = 0.28/0.72 up to silver content of about xAg = 0.2 at 1373 K; Δ H ̄ Sn ${\\\\Delta }{\\\\bar{H}}_{\\\\text{Sn}}$ along three sections (xAg/xEu = 0.31/0.69, 0.50/0.50 and 0.70/0.30) up to xSn = 0.35 at 1373 K; Δ H ̄ Eu ${\\\\Delta }{\\\\bar{H}}_{\\\\text{Eu}}$ along the section xAg/xSn = 0.50/0.50 up to xEu = 0.25 at 1313 K. The enthalpies of mixing in the liquid Ag–Eu–Sn alloys show exothermic effects, being more pronounced in the vicinity of the Eu–Sn binary constituent. The minimum value of the integral enthalpy of about −60 kJ mol−1 is observed in the composition region of the congruently melting Eu2Sn phase.\",\"PeriodicalId\":14079,\"journal\":{\"name\":\"International Journal of Materials Research\",\"volume\":\" 11\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/ijmr-2023-0063\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/ijmr-2023-0063","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
摘要 在 1313 至 1373 K 的温度范围内,通过等压量热法测定了 Ag-Eu-Sn 三元体系液态合金在较大浓度范围内的混合焓。沿以下截面测量了三元体系各组分的分焓:Δ H ̄ Ag ${\Delta }{bar\{H}}_{text{Ag}}$ 沿 xEu/xSn = 0.28/0.72 截面,直到银含量约为 xAg = 0.2 at 1373 K; Δ H ̄ Sn ${Delta }{bar{H}}_{text{Sn}}$ 沿着三个截面 (xAg/xEu = 0.31/0.69, 0.50/0.50 and 0.70/0.30) 直到 xSn = 0.35 at 1373 K; Δ H ̄ Eu ${Delta }{bar\{H}}_{text{Eu}}$ 沿着 xAg/xSn = 0.50/0.50 直至 xEu = 0.25(1313 K)的截面。液态 Ag-Eu-Sn 合金中的混合焓显示出放热效应,在 Eu-Sn 二元成分附近更为明显。在同熔 Eu2Sn 相的成分区域观察到的积分焓最小值约为 -60 kJ mol-1。
Enthalpies of mixing in ternary Ag–Eu–Sn liquid alloys
Abstract The enthalpies of mixing in liquid alloys of the ternary Ag–Eu–Sn system were determined over a wide range of concentrations by means of isoperibolic calorimetry in the temperature range from 1313 to 1373 K. The partial enthalpies of each component of the ternary system were measured along the following sections: Δ H ̄ Ag ${\Delta }{\bar{H}}_{\text{Ag}}$ along the section with xEu/xSn = 0.28/0.72 up to silver content of about xAg = 0.2 at 1373 K; Δ H ̄ Sn ${\Delta }{\bar{H}}_{\text{Sn}}$ along three sections (xAg/xEu = 0.31/0.69, 0.50/0.50 and 0.70/0.30) up to xSn = 0.35 at 1373 K; Δ H ̄ Eu ${\Delta }{\bar{H}}_{\text{Eu}}$ along the section xAg/xSn = 0.50/0.50 up to xEu = 0.25 at 1313 K. The enthalpies of mixing in the liquid Ag–Eu–Sn alloys show exothermic effects, being more pronounced in the vicinity of the Eu–Sn binary constituent. The minimum value of the integral enthalpy of about −60 kJ mol−1 is observed in the composition region of the congruently melting Eu2Sn phase.
期刊介绍:
The International Journal of Materials Research (IJMR) publishes original high quality experimental and theoretical papers and reviews on basic and applied research in the field of materials science and engineering, with focus on synthesis, processing, constitution, and properties of all classes of materials. Particular emphasis is placed on microstructural design, phase relations, computational thermodynamics, and kinetics at the nano to macro scale. Contributions may also focus on progress in advanced characterization techniques. All articles are subject to thorough, independent peer review.