L Alfei, F Maggi, F Parvopassu, G Bertoncello, R De Vita
{"title":"鱼类幼虫后肌肉生长:DNA流式细胞术和形态计量学分析。","authors":"L Alfei, F Maggi, F Parvopassu, G Bertoncello, R De Vita","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanism of postlarval fish myotomal growth was investigated in trout (Salmo gairdneri) by means of morphometric and cytofluorometric analysis. The mechanism by which new fibres are added during postlarval growth (hyperplasia) is not fully understood. In histological cross sections these new fibres have a small diameter which give the muscle a \"mosaic\" appearance. One hypothesis suggested that they could be derived from the proliferative activity of satellite cells. DNA cytofluorometric analysis of nuclei suspensions obtained from trout white myotomal muscle during different developmental stages (eleutherembyronic; alevin; yearling and adult) showed a consistently low S-cytometric phase during all stage in which myofibres of small diameters were present. The percentage of such small fibres, determined by morphometric analysis, suggested that satellite cells are the proliferative population. In fact, their percentages, as determined by morphometric analysis in histological section, bear a linear relationship with the S-cytometric phase percent nuclei (R = 0.927). Only in adults (67 cm in size) there was a significant decrease in the S-cytometric phase. At this stage, in histological sections, the myotomal muscle no longer had a \"mosaic\" appearance because of the disappearance of the small fibres. It may, therefore, be supposed that in the cm 67 adult specimens, the proliferative population is entering the G0 phase. It is known, in fact, that muscle growth proceeds only by fibre hypertrophy in trout longer than 70 cm in length (Stickland, 1983).</p>","PeriodicalId":8726,"journal":{"name":"Basic and applied histochemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1989-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Postlarval muscle growth in fish: a DNA flow cytometric and morphometric analysis.\",\"authors\":\"L Alfei, F Maggi, F Parvopassu, G Bertoncello, R De Vita\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mechanism of postlarval fish myotomal growth was investigated in trout (Salmo gairdneri) by means of morphometric and cytofluorometric analysis. The mechanism by which new fibres are added during postlarval growth (hyperplasia) is not fully understood. In histological cross sections these new fibres have a small diameter which give the muscle a \\\"mosaic\\\" appearance. One hypothesis suggested that they could be derived from the proliferative activity of satellite cells. DNA cytofluorometric analysis of nuclei suspensions obtained from trout white myotomal muscle during different developmental stages (eleutherembyronic; alevin; yearling and adult) showed a consistently low S-cytometric phase during all stage in which myofibres of small diameters were present. The percentage of such small fibres, determined by morphometric analysis, suggested that satellite cells are the proliferative population. In fact, their percentages, as determined by morphometric analysis in histological section, bear a linear relationship with the S-cytometric phase percent nuclei (R = 0.927). Only in adults (67 cm in size) there was a significant decrease in the S-cytometric phase. At this stage, in histological sections, the myotomal muscle no longer had a \\\"mosaic\\\" appearance because of the disappearance of the small fibres. It may, therefore, be supposed that in the cm 67 adult specimens, the proliferative population is entering the G0 phase. It is known, in fact, that muscle growth proceeds only by fibre hypertrophy in trout longer than 70 cm in length (Stickland, 1983).</p>\",\"PeriodicalId\":8726,\"journal\":{\"name\":\"Basic and applied histochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic and applied histochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic and applied histochemistry","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Postlarval muscle growth in fish: a DNA flow cytometric and morphometric analysis.
The mechanism of postlarval fish myotomal growth was investigated in trout (Salmo gairdneri) by means of morphometric and cytofluorometric analysis. The mechanism by which new fibres are added during postlarval growth (hyperplasia) is not fully understood. In histological cross sections these new fibres have a small diameter which give the muscle a "mosaic" appearance. One hypothesis suggested that they could be derived from the proliferative activity of satellite cells. DNA cytofluorometric analysis of nuclei suspensions obtained from trout white myotomal muscle during different developmental stages (eleutherembyronic; alevin; yearling and adult) showed a consistently low S-cytometric phase during all stage in which myofibres of small diameters were present. The percentage of such small fibres, determined by morphometric analysis, suggested that satellite cells are the proliferative population. In fact, their percentages, as determined by morphometric analysis in histological section, bear a linear relationship with the S-cytometric phase percent nuclei (R = 0.927). Only in adults (67 cm in size) there was a significant decrease in the S-cytometric phase. At this stage, in histological sections, the myotomal muscle no longer had a "mosaic" appearance because of the disappearance of the small fibres. It may, therefore, be supposed that in the cm 67 adult specimens, the proliferative population is entering the G0 phase. It is known, in fact, that muscle growth proceeds only by fibre hypertrophy in trout longer than 70 cm in length (Stickland, 1983).