{"title":"各种开放源 dem 数据的垂直精度评估:DEMNAS、SRTM-1 和 ASTER GDEM","authors":"D. B. Susetyo","doi":"10.3846/gac.2023.18168","DOIUrl":null,"url":null,"abstract":"DEM can be used optimally when it has good accuracy. Thus, assessing DEM data quality is mandatory before use it for specific thematic applications. Recently, there are open-source DEM data that can be downloaded and used freely by users, such as SRTM and ASTER GDEM. However, Indonesia tried to develop their own national seamless DEM, called DEMNAS. This study aims to evaluate the open-source DEMs that are popular in Indonesia: DEMNAS, SRTM-1, and ASTER GDEM. Accuracy assessment was conducted by comparing the DEMs to GPS measurements. The results showed that SRTM-1 had the best accuracy with 5.529 meters, followed by DEMNAS and ASTER GDEM with 8.172 meters and 13.632 meters, respectively. We also analyzed the linear relation between DEMs and GPS elevation data using the coefficient of determination, and all DEMs showed good R2 values. Lastly, the correlation between the error and the height of DEMs was also examined. The results were SRTM-1 had correlation between the height and accuracy, as well as ASTER GDEM. In contrast, the errors in DEMNAS were relatively uniform in all range of elevation.","PeriodicalId":44129,"journal":{"name":"Geodesy and Cartography","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VERTICAL ACCURACY ASSESSMENT OF VARIOUS OPEN-SOURCE DEM DATA: DEMNAS, SRTM-1, AND ASTER GDEM\",\"authors\":\"D. B. Susetyo\",\"doi\":\"10.3846/gac.2023.18168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DEM can be used optimally when it has good accuracy. Thus, assessing DEM data quality is mandatory before use it for specific thematic applications. Recently, there are open-source DEM data that can be downloaded and used freely by users, such as SRTM and ASTER GDEM. However, Indonesia tried to develop their own national seamless DEM, called DEMNAS. This study aims to evaluate the open-source DEMs that are popular in Indonesia: DEMNAS, SRTM-1, and ASTER GDEM. Accuracy assessment was conducted by comparing the DEMs to GPS measurements. The results showed that SRTM-1 had the best accuracy with 5.529 meters, followed by DEMNAS and ASTER GDEM with 8.172 meters and 13.632 meters, respectively. We also analyzed the linear relation between DEMs and GPS elevation data using the coefficient of determination, and all DEMs showed good R2 values. Lastly, the correlation between the error and the height of DEMs was also examined. The results were SRTM-1 had correlation between the height and accuracy, as well as ASTER GDEM. In contrast, the errors in DEMNAS were relatively uniform in all range of elevation.\",\"PeriodicalId\":44129,\"journal\":{\"name\":\"Geodesy and Cartography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodesy and Cartography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/gac.2023.18168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodesy and Cartography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/gac.2023.18168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
摘要
如果 DEM 具有良好的精度,就能得到最佳利用。因此,在将 DEM 数据用于特定专题应用之前,必须对其质量进行评估。最近,有一些开放源码的 DEM 数据可供用户免费下载和使用,如 SRTM 和 ASTER GDEM。不过,印度尼西亚试图开发自己的国家无缝 DEM,即 DEMNAS。本研究旨在评估印尼流行的开放源码 DEM:DEMNAS、SRTM-1 和 ASTER GDEM。通过将 DEM 与 GPS 测量结果进行比较,对精度进行了评估。结果显示,SRTM-1 的精度最高,为 5.529 米,其次是 DEMNAS 和 ASTER GDEM,分别为 8.172 米和 13.632 米。我们还利用判定系数分析了 DEM 与 GPS 高程数据之间的线性关系,所有 DEM 都显示出良好的 R2 值。最后,我们还研究了 DEM 误差与高度之间的相关性。结果表明,SRTM-1 和 ASTER GDEM 的高度与精度之间具有相关性。相比之下,DEMNAS 的误差在所有高度范围内都相对均匀。
VERTICAL ACCURACY ASSESSMENT OF VARIOUS OPEN-SOURCE DEM DATA: DEMNAS, SRTM-1, AND ASTER GDEM
DEM can be used optimally when it has good accuracy. Thus, assessing DEM data quality is mandatory before use it for specific thematic applications. Recently, there are open-source DEM data that can be downloaded and used freely by users, such as SRTM and ASTER GDEM. However, Indonesia tried to develop their own national seamless DEM, called DEMNAS. This study aims to evaluate the open-source DEMs that are popular in Indonesia: DEMNAS, SRTM-1, and ASTER GDEM. Accuracy assessment was conducted by comparing the DEMs to GPS measurements. The results showed that SRTM-1 had the best accuracy with 5.529 meters, followed by DEMNAS and ASTER GDEM with 8.172 meters and 13.632 meters, respectively. We also analyzed the linear relation between DEMs and GPS elevation data using the coefficient of determination, and all DEMs showed good R2 values. Lastly, the correlation between the error and the height of DEMs was also examined. The results were SRTM-1 had correlation between the height and accuracy, as well as ASTER GDEM. In contrast, the errors in DEMNAS were relatively uniform in all range of elevation.
期刊介绍:
THE JOURNAL IS DESIGNED FOR PUBLISHING PAPERS CONCERNING THE FOLLOWING FIELDS OF RESEARCH: •study, establishment and improvement of the geodesy and mapping technologies, •establishing and improving the geodetic networks, •theoretical and practical principles of developing standards for geodetic measurements, •mathematical treatment of the geodetic and photogrammetric measurements, •controlling and application of the permanent GPS stations, •study and measurements of Earth’s figure and parameters of the gravity field, •study and development the geoid models,