使用筑波市政厅周围拍摄的真实图像数据集进行语义分割的数据扩增

Pub Date : 2023-12-20 DOI:10.20965/jrm.2023.p1450
Yuriko Ueda, Miho Adachi, Junya Morioka, Marin Wada, Ryusuke Miyamoto
{"title":"使用筑波市政厅周围拍摄的真实图像数据集进行语义分割的数据扩增","authors":"Yuriko Ueda, Miho Adachi, Junya Morioka, Marin Wada, Ryusuke Miyamoto","doi":"10.20965/jrm.2023.p1450","DOIUrl":null,"url":null,"abstract":"We are exploring the use of semantic scene understanding in autonomous navigation for the Tsukuba Challenge. However, manually creating a comprehensive dataset that covers various outdoor scenes with time and weather variations to ensure high accuracy in semantic segmentation is onerous. Therefore, we propose modifications to the model and backbone of semantic segmentation, along with data augmentation techniques. The data augmentation techniques, including the addition of virtual shadows, histogram matching, and style transformations, aim to improve the representation of variations in shadow presence and color tones. In our evaluation using images from the Tsukuba Challenge course, we achieved the highest accuracy by switching the model to PSPNet and changing the backbone to ResNeXt. Furthermore, the adaptation of shadow and histogram proved effective for critical classes in robot navigation, such as road, sidewalk, and terrain. In particular, the combination of histogram matching and shadow application demonstrated effectiveness for data not included in the base training dataset.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Augmentation for Semantic Segmentation Using a Real Image Dataset Captured Around the Tsukuba City Hall\",\"authors\":\"Yuriko Ueda, Miho Adachi, Junya Morioka, Marin Wada, Ryusuke Miyamoto\",\"doi\":\"10.20965/jrm.2023.p1450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are exploring the use of semantic scene understanding in autonomous navigation for the Tsukuba Challenge. However, manually creating a comprehensive dataset that covers various outdoor scenes with time and weather variations to ensure high accuracy in semantic segmentation is onerous. Therefore, we propose modifications to the model and backbone of semantic segmentation, along with data augmentation techniques. The data augmentation techniques, including the addition of virtual shadows, histogram matching, and style transformations, aim to improve the representation of variations in shadow presence and color tones. In our evaluation using images from the Tsukuba Challenge course, we achieved the highest accuracy by switching the model to PSPNet and changing the backbone to ResNeXt. Furthermore, the adaptation of shadow and histogram proved effective for critical classes in robot navigation, such as road, sidewalk, and terrain. In particular, the combination of histogram matching and shadow application demonstrated effectiveness for data not included in the base training dataset.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jrm.2023.p1450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p1450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们正在为筑波挑战赛探索在自主导航中使用语义场景理解。然而,要确保语义分割的高准确性,手动创建一个涵盖各种室外场景、具有时间和天气变化的综合数据集是非常繁重的。因此,我们建议对语义分割的模型和骨干进行修改,同时采用数据增强技术。数据增强技术包括添加虚拟阴影、直方图匹配和风格转换,旨在改进阴影存在和色调变化的表示。在使用筑波挑战赛的图像进行的评估中,我们将模型切换为 PSPNet,并将骨干网切换为 ResNeXt,从而获得了最高的准确率。此外,阴影和直方图的调整在机器人导航的关键类别(如道路、人行道和地形)中证明是有效的。特别是,直方图匹配和阴影应用的组合对于基础训练数据集中未包含的数据显示出了有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Data Augmentation for Semantic Segmentation Using a Real Image Dataset Captured Around the Tsukuba City Hall
We are exploring the use of semantic scene understanding in autonomous navigation for the Tsukuba Challenge. However, manually creating a comprehensive dataset that covers various outdoor scenes with time and weather variations to ensure high accuracy in semantic segmentation is onerous. Therefore, we propose modifications to the model and backbone of semantic segmentation, along with data augmentation techniques. The data augmentation techniques, including the addition of virtual shadows, histogram matching, and style transformations, aim to improve the representation of variations in shadow presence and color tones. In our evaluation using images from the Tsukuba Challenge course, we achieved the highest accuracy by switching the model to PSPNet and changing the backbone to ResNeXt. Furthermore, the adaptation of shadow and histogram proved effective for critical classes in robot navigation, such as road, sidewalk, and terrain. In particular, the combination of histogram matching and shadow application demonstrated effectiveness for data not included in the base training dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信