Qingwei Zhou, Mingjiao Shi, Mengfan Wu, Ningbin Zhao, Peizheng Shi, Yangguang Zhu, Aiwu Wang, Chen Ye, Cheng-Te Lin, Li Fu
{"title":"优化石墨烯掺杂剂,实现小分子和离子的直接电催化定量","authors":"Qingwei Zhou, Mingjiao Shi, Mengfan Wu, Ningbin Zhao, Peizheng Shi, Yangguang Zhu, Aiwu Wang, Chen Ye, Cheng-Te Lin, Li Fu","doi":"10.3390/catal14010008","DOIUrl":null,"url":null,"abstract":"This review critically evaluates the recent advancements in graphene dopants for electrocatalytic quantification of small molecules and ions. Emphasizing the enhanced catalytic activity and specificity of doped graphene, the paper delves into the various doping methods, ranging from chemical to physical techniques. It presents a detailed analysis of the mechanisms underlying graphene-based electrocatalysis and its applications in environmental monitoring, health care, and pharmaceuticals. The review also addresses challenges such as the reproducibility and stability of doped graphene, suggesting future research directions. By summarizing the latest findings, this review aims to elucidate the role of doped graphene in improving the sensitivity and selectivity of electrocatalytic processes, bridging the gap between research and practical use.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"120 44","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Graphene Dopants for Direct Electrocatalytic Quantification of Small Molecules and Ions\",\"authors\":\"Qingwei Zhou, Mingjiao Shi, Mengfan Wu, Ningbin Zhao, Peizheng Shi, Yangguang Zhu, Aiwu Wang, Chen Ye, Cheng-Te Lin, Li Fu\",\"doi\":\"10.3390/catal14010008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review critically evaluates the recent advancements in graphene dopants for electrocatalytic quantification of small molecules and ions. Emphasizing the enhanced catalytic activity and specificity of doped graphene, the paper delves into the various doping methods, ranging from chemical to physical techniques. It presents a detailed analysis of the mechanisms underlying graphene-based electrocatalysis and its applications in environmental monitoring, health care, and pharmaceuticals. The review also addresses challenges such as the reproducibility and stability of doped graphene, suggesting future research directions. By summarizing the latest findings, this review aims to elucidate the role of doped graphene in improving the sensitivity and selectivity of electrocatalytic processes, bridging the gap between research and practical use.\",\"PeriodicalId\":9794,\"journal\":{\"name\":\"Catalysts\",\"volume\":\"120 44\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysts\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/catal14010008\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal14010008","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Optimizing Graphene Dopants for Direct Electrocatalytic Quantification of Small Molecules and Ions
This review critically evaluates the recent advancements in graphene dopants for electrocatalytic quantification of small molecules and ions. Emphasizing the enhanced catalytic activity and specificity of doped graphene, the paper delves into the various doping methods, ranging from chemical to physical techniques. It presents a detailed analysis of the mechanisms underlying graphene-based electrocatalysis and its applications in environmental monitoring, health care, and pharmaceuticals. The review also addresses challenges such as the reproducibility and stability of doped graphene, suggesting future research directions. By summarizing the latest findings, this review aims to elucidate the role of doped graphene in improving the sensitivity and selectivity of electrocatalytic processes, bridging the gap between research and practical use.
期刊介绍:
Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.