Zheng Tian, Aibing Zhang, Xiangzhi Zheng, L. Kong, Bin Su, Bin Liu, Jianjing Ding, Wenjing Wang, Chao Liu, Yulong Lv, Jun Gao, Ling Ma
{"title":"FY-3E 卫星等离子体分析仪","authors":"Zheng Tian, Aibing Zhang, Xiangzhi Zheng, L. Kong, Bin Su, Bin Liu, Jianjing Ding, Wenjing Wang, Chao Liu, Yulong Lv, Jun Gao, Ling Ma","doi":"10.3390/atmos15010014","DOIUrl":null,"url":null,"abstract":"The FY-3E satellite plasma analyzer marks China’s first detection of the characteristics, occurrence, and development of the typical plasma environment in the dawn–dusk orbit space. It provides data source support for operational space weather alerts and forecasts, helps ensure the in-orbit safety of the satellite, and accumulates space environment detection data for space environment modeling and space physics research. This paper gives a detailed introduction to the detection technology adopted by the FY-3E satellite plasma analyzer. We calibrated its performance through a calibration experiment and then analyzed and compared it with similar instruments in China. It is indicated that the instrument is capable of measuring an ion energy spectrum of 24 eV~32 keV and an electron energy spectrum of 23.7 eV~31.6 keV, its field of view reaches 180° × 90°, and the inversed measurement range of spacecraft absolute potential is better than −30 kV~+30 kV. All these contribute to a notably improved technology for plasma and satellite potential detection of China’s LEO satellites.","PeriodicalId":8580,"journal":{"name":"Atmosphere","volume":"140 32","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FY-3E Satellite Plasma Analyzer\",\"authors\":\"Zheng Tian, Aibing Zhang, Xiangzhi Zheng, L. Kong, Bin Su, Bin Liu, Jianjing Ding, Wenjing Wang, Chao Liu, Yulong Lv, Jun Gao, Ling Ma\",\"doi\":\"10.3390/atmos15010014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The FY-3E satellite plasma analyzer marks China’s first detection of the characteristics, occurrence, and development of the typical plasma environment in the dawn–dusk orbit space. It provides data source support for operational space weather alerts and forecasts, helps ensure the in-orbit safety of the satellite, and accumulates space environment detection data for space environment modeling and space physics research. This paper gives a detailed introduction to the detection technology adopted by the FY-3E satellite plasma analyzer. We calibrated its performance through a calibration experiment and then analyzed and compared it with similar instruments in China. It is indicated that the instrument is capable of measuring an ion energy spectrum of 24 eV~32 keV and an electron energy spectrum of 23.7 eV~31.6 keV, its field of view reaches 180° × 90°, and the inversed measurement range of spacecraft absolute potential is better than −30 kV~+30 kV. All these contribute to a notably improved technology for plasma and satellite potential detection of China’s LEO satellites.\",\"PeriodicalId\":8580,\"journal\":{\"name\":\"Atmosphere\",\"volume\":\"140 32\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/atmos15010014\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/atmos15010014","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The FY-3E satellite plasma analyzer marks China’s first detection of the characteristics, occurrence, and development of the typical plasma environment in the dawn–dusk orbit space. It provides data source support for operational space weather alerts and forecasts, helps ensure the in-orbit safety of the satellite, and accumulates space environment detection data for space environment modeling and space physics research. This paper gives a detailed introduction to the detection technology adopted by the FY-3E satellite plasma analyzer. We calibrated its performance through a calibration experiment and then analyzed and compared it with similar instruments in China. It is indicated that the instrument is capable of measuring an ion energy spectrum of 24 eV~32 keV and an electron energy spectrum of 23.7 eV~31.6 keV, its field of view reaches 180° × 90°, and the inversed measurement range of spacecraft absolute potential is better than −30 kV~+30 kV. All these contribute to a notably improved technology for plasma and satellite potential detection of China’s LEO satellites.
期刊介绍:
Atmosphere (ISSN 2073-4433) is an international and cross-disciplinary scholarly journal of scientific studies related to the atmosphere. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.