通过体外方法组合评估三氯生和三氯卡班的遗传毒性、突变性和内分泌干扰潜力

IF 6.8 Q1 TOXICOLOGY
J. Chrz, M. Dvořáková, K. Kejlová, D. Očadlíková, L. Svobodová, L. Malina, B. Hošíková, D. Jírová, H. Bendová, Hana Kolářová
{"title":"通过体外方法组合评估三氯生和三氯卡班的遗传毒性、突变性和内分泌干扰潜力","authors":"J. Chrz, M. Dvořáková, K. Kejlová, D. Očadlíková, L. Svobodová, L. Malina, B. Hošíková, D. Jírová, H. Bendová, Hana Kolářová","doi":"10.3390/jox14010002","DOIUrl":null,"url":null,"abstract":"Triclosan and Triclocarban, preservatives widely used in cosmetics and other consumer products, underwent evaluation using a battery of new-approach methodologies in vitro (NAMs). Specifically, the Microplate Ames Test (MPF™ Test, Xenometrix, Allschwil, Switzerland) was employed to assess mutagenicity, the Comet assay in vitro on the HaCat cell line and the Mammalian Chromosome Aberration Test were utilized to evaluate genotoxicity, and the XenoScreen® YES/YAS assay was applied to investigate endocrine disruption. The chemicals did not exhibit any positive responses for mutagenicity. However, the mammalian chromosome aberration test identified both chemicals as being positive for genotoxicity at 10 µg/mL. In the Comet assay, the percentage of DNA in the tail significantly increased in a concentration-dependent manner (at 5 and 10 µg/mL for Triclosan, at 2.5, 5, and 10 µg/mL for Triclocarban). The positive response depended on the increasing concentration and the duration of exposure. Triclosan, but not Triclocarban in any of the endocrine assays performed, indicated a potential for endocrine activity in the anti-estrogenic and anti-androgenic assays. The positive in vitro results detected were obtained for concentrations relevant to final products. The alarming findings obtained with the use of new-approach methodologies (NAMs) justify the current precautionary regulatory approach, limiting the use of these preservatives.","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"52 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Potential for Genotoxicity, Mutagenicity and Endocrine Disruption in Triclosan and Triclocarban Assessed through a Combination of In Vitro Methods\",\"authors\":\"J. Chrz, M. Dvořáková, K. Kejlová, D. Očadlíková, L. Svobodová, L. Malina, B. Hošíková, D. Jírová, H. Bendová, Hana Kolářová\",\"doi\":\"10.3390/jox14010002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Triclosan and Triclocarban, preservatives widely used in cosmetics and other consumer products, underwent evaluation using a battery of new-approach methodologies in vitro (NAMs). Specifically, the Microplate Ames Test (MPF™ Test, Xenometrix, Allschwil, Switzerland) was employed to assess mutagenicity, the Comet assay in vitro on the HaCat cell line and the Mammalian Chromosome Aberration Test were utilized to evaluate genotoxicity, and the XenoScreen® YES/YAS assay was applied to investigate endocrine disruption. The chemicals did not exhibit any positive responses for mutagenicity. However, the mammalian chromosome aberration test identified both chemicals as being positive for genotoxicity at 10 µg/mL. In the Comet assay, the percentage of DNA in the tail significantly increased in a concentration-dependent manner (at 5 and 10 µg/mL for Triclosan, at 2.5, 5, and 10 µg/mL for Triclocarban). The positive response depended on the increasing concentration and the duration of exposure. Triclosan, but not Triclocarban in any of the endocrine assays performed, indicated a potential for endocrine activity in the anti-estrogenic and anti-androgenic assays. The positive in vitro results detected were obtained for concentrations relevant to final products. The alarming findings obtained with the use of new-approach methodologies (NAMs) justify the current precautionary regulatory approach, limiting the use of these preservatives.\",\"PeriodicalId\":42356,\"journal\":{\"name\":\"Journal of Xenobiotics\",\"volume\":\"52 6\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Xenobiotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jox14010002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox14010002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

三氯生和三氯卡班是化妆品和其他消费品中广泛使用的防腐剂,我们使用一系列体外新方法(NAMs)对它们进行了评估。具体来说,微孔板艾姆斯试验(MPF™ Test,Xenometrix,Allschwil,瑞士)被用来评估诱变性,体外彗星试验(HaCat 细胞系)和哺乳动物染色体畸变试验(Mammalian Chromosome Aberration Test)被用来评估遗传毒性,XenoScreen® YES/YAS 试验被用来研究内分泌干扰。结果表明,这些化学品在诱变性方面没有表现出任何阳性反应。不过,在哺乳动物染色体畸变试验中,当浓度为 10 微克/毫升时,这两种化学品的遗传毒性均呈阳性反应。在彗星试验中,尾部 DNA 的百分比以浓度依赖的方式显著增加(三氯生的浓度为 5 和 10 微克/毫升,三氯卡班的浓度为 2.5、5 和 10 微克/毫升)。阳性反应取决于浓度的增加和接触时间的长短。在所进行的任何内分泌检测中,三氯生(而非三氯卡班)在抗雌激素和抗雄激素检测中均显示出潜在的内分泌活性。检测到的阳性体外结果是在与最终产品相关的浓度下获得的。使用新方法(NAMs)得出的令人担忧的结果证明,目前的预防性监管方法是合理的,可以限制这些防腐剂的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Potential for Genotoxicity, Mutagenicity and Endocrine Disruption in Triclosan and Triclocarban Assessed through a Combination of In Vitro Methods
Triclosan and Triclocarban, preservatives widely used in cosmetics and other consumer products, underwent evaluation using a battery of new-approach methodologies in vitro (NAMs). Specifically, the Microplate Ames Test (MPF™ Test, Xenometrix, Allschwil, Switzerland) was employed to assess mutagenicity, the Comet assay in vitro on the HaCat cell line and the Mammalian Chromosome Aberration Test were utilized to evaluate genotoxicity, and the XenoScreen® YES/YAS assay was applied to investigate endocrine disruption. The chemicals did not exhibit any positive responses for mutagenicity. However, the mammalian chromosome aberration test identified both chemicals as being positive for genotoxicity at 10 µg/mL. In the Comet assay, the percentage of DNA in the tail significantly increased in a concentration-dependent manner (at 5 and 10 µg/mL for Triclosan, at 2.5, 5, and 10 µg/mL for Triclocarban). The positive response depended on the increasing concentration and the duration of exposure. Triclosan, but not Triclocarban in any of the endocrine assays performed, indicated a potential for endocrine activity in the anti-estrogenic and anti-androgenic assays. The positive in vitro results detected were obtained for concentrations relevant to final products. The alarming findings obtained with the use of new-approach methodologies (NAMs) justify the current precautionary regulatory approach, limiting the use of these preservatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
1.70%
发文量
21
审稿时长
10 weeks
期刊介绍: The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信