{"title":"优化开孔泡沫型 Ni-Mg-Al 催化剂,促进二氧化碳加氢制甲烷","authors":"Paulina Summa, M. Motak, P. Da Costa","doi":"10.3390/catal14010011","DOIUrl":null,"url":null,"abstract":"In the presented work, the catalytic performance of a nickel catalyst, in CO2 hydrogenation to methane, within a ZrO2 open-cell foam (OCF)-based catalyst was studied. Two series of analogous samples were prepared and coated with 100–150 mg of a Mg-Al oxide interface to stabilize the formation of well-dispersed Ni crystallites, with 10–15 wt% of nickel as an active phase, based on 30 ppi foam or 45 ppi foam. The main factor influencing catalytic performance was the geometric parameters of the applied foams. The series of catalysts based on 30 ppi OCF showed CO2 conversion in the range of 30–50% at 300 °C, while those based on 45 ppi OCF resulted in a significantly enhancement of the catalytic activity: 90–92% CO2 conversion under the same experimental conditions. Calculations of the internal and external mass transfer limitations were performed. The observed difference in the catalytic activity was primarily related to the radial transport inside the pores, confirmed with the explicitly higher conversions.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"5 11","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of an Open-Cell Foam-Based Ni-Mg-Al Catalyst for Enhanced CO2 Hydrogenation to Methane\",\"authors\":\"Paulina Summa, M. Motak, P. Da Costa\",\"doi\":\"10.3390/catal14010011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the presented work, the catalytic performance of a nickel catalyst, in CO2 hydrogenation to methane, within a ZrO2 open-cell foam (OCF)-based catalyst was studied. Two series of analogous samples were prepared and coated with 100–150 mg of a Mg-Al oxide interface to stabilize the formation of well-dispersed Ni crystallites, with 10–15 wt% of nickel as an active phase, based on 30 ppi foam or 45 ppi foam. The main factor influencing catalytic performance was the geometric parameters of the applied foams. The series of catalysts based on 30 ppi OCF showed CO2 conversion in the range of 30–50% at 300 °C, while those based on 45 ppi OCF resulted in a significantly enhancement of the catalytic activity: 90–92% CO2 conversion under the same experimental conditions. Calculations of the internal and external mass transfer limitations were performed. The observed difference in the catalytic activity was primarily related to the radial transport inside the pores, confirmed with the explicitly higher conversions.\",\"PeriodicalId\":9794,\"journal\":{\"name\":\"Catalysts\",\"volume\":\"5 11\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysts\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/catal14010011\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal14010011","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了一种镍催化剂在基于 ZrO2 的开孔泡沫 (OCF) 催化剂中将二氧化碳加氢转化为甲烷的催化性能。在 30 ppi 泡沫或 45 ppi 泡沫的基础上,制备了两个系列的类似样品,并在其表面涂覆了 100-150 毫克的氧化镁-氧化铝界面,以稳定形成分散良好的镍晶体,其中 10-15 wt%的镍为活性相。影响催化性能的主要因素是所用泡沫的几何参数。基于 30 ppi OCF 的系列催化剂在 300 °C 时的二氧化碳转化率为 30-50%,而基于 45 ppi OCF 的催化剂则显著提高了催化活性:在相同的实验条件下,二氧化碳转化率为 90-92%。对内部和外部传质限制进行了计算。所观察到的催化活性差异主要与孔隙内的径向传输有关,这一点通过更高的转化率得到了证实。
Optimization of an Open-Cell Foam-Based Ni-Mg-Al Catalyst for Enhanced CO2 Hydrogenation to Methane
In the presented work, the catalytic performance of a nickel catalyst, in CO2 hydrogenation to methane, within a ZrO2 open-cell foam (OCF)-based catalyst was studied. Two series of analogous samples were prepared and coated with 100–150 mg of a Mg-Al oxide interface to stabilize the formation of well-dispersed Ni crystallites, with 10–15 wt% of nickel as an active phase, based on 30 ppi foam or 45 ppi foam. The main factor influencing catalytic performance was the geometric parameters of the applied foams. The series of catalysts based on 30 ppi OCF showed CO2 conversion in the range of 30–50% at 300 °C, while those based on 45 ppi OCF resulted in a significantly enhancement of the catalytic activity: 90–92% CO2 conversion under the same experimental conditions. Calculations of the internal and external mass transfer limitations were performed. The observed difference in the catalytic activity was primarily related to the radial transport inside the pores, confirmed with the explicitly higher conversions.
期刊介绍:
Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.