桥梁钢弦结构的实验和分析研究

Edmundas Beivydas, A. Juozapaitis, I. Paeglite
{"title":"桥梁钢弦结构的实验和分析研究","authors":"Edmundas Beivydas, A. Juozapaitis, I. Paeglite","doi":"10.7250/2023-18.622","DOIUrl":null,"url":null,"abstract":"Due to their efficiency, suspension structures are widely used in both roof slabs and different kinds of bridges, from which stress ribbon pedestrian bridges can be distinguished. The main disadvantage of the latter is high deformability, especially under asymmetrical loads. Recently, string structures or their systems have been introduced into bridge building. Numerical and experimental analysis of string behaviour under symmetrical and asymmetrical loads is carried out in the article. Analytical expressions for the calculation of string displacements and tensile forces are presented. The impact of the string pre-stress on the state of its stresses and deformations was evaluated. The assessment of the accuracy of analytical expressions by applying the results of numerical and experimental research is presented. A methodology is proposed for calculating the pre-stressing force taking into account the operational requirements. Three main loading options at different string pre-stress values are analysed. It is worth mentioning that the difference (error) between the analytical and numerical results is not extensive, it does not exceed 3%. It is necessary to notice that in all cases, the analytically obtained results are somewhat higher than FEM (numerically) obtained results.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"21 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Analytical Studies of String Steel Structure for Bridges\",\"authors\":\"Edmundas Beivydas, A. Juozapaitis, I. Paeglite\",\"doi\":\"10.7250/2023-18.622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to their efficiency, suspension structures are widely used in both roof slabs and different kinds of bridges, from which stress ribbon pedestrian bridges can be distinguished. The main disadvantage of the latter is high deformability, especially under asymmetrical loads. Recently, string structures or their systems have been introduced into bridge building. Numerical and experimental analysis of string behaviour under symmetrical and asymmetrical loads is carried out in the article. Analytical expressions for the calculation of string displacements and tensile forces are presented. The impact of the string pre-stress on the state of its stresses and deformations was evaluated. The assessment of the accuracy of analytical expressions by applying the results of numerical and experimental research is presented. A methodology is proposed for calculating the pre-stressing force taking into account the operational requirements. Three main loading options at different string pre-stress values are analysed. It is worth mentioning that the difference (error) between the analytical and numerical results is not extensive, it does not exceed 3%. It is necessary to notice that in all cases, the analytically obtained results are somewhat higher than FEM (numerically) obtained results.\",\"PeriodicalId\":297140,\"journal\":{\"name\":\"The Baltic Journal of Road and Bridge Engineering\",\"volume\":\"21 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Baltic Journal of Road and Bridge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7250/2023-18.622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Baltic Journal of Road and Bridge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7250/2023-18.622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

悬索结构因其高效而被广泛应用于屋顶板和各种桥梁,其中应力带式人行天桥可与之区分开来。后者的主要缺点是易变形,尤其是在不对称荷载作用下。最近,桥梁建筑中引入了弦结构或其系统。文章对对称和非对称荷载下的弦结构行为进行了数值和实验分析。文章给出了计算弦线位移和拉力的分析表达式。评估了弦的预应力对其应力和变形状态的影响。通过应用数值和实验研究的结果,对分析表达式的准确性进行了评估。考虑到运行要求,提出了计算预应力的方法。分析了不同弦预应力值下的三种主要加载方案。值得一提的是,分析结果和数值结果之间的差异(误差)不大,不超过 3%。需要注意的是,在所有情况下,分析得出的结果都略高于有限元(数值)得出的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental and Analytical Studies of String Steel Structure for Bridges
Due to their efficiency, suspension structures are widely used in both roof slabs and different kinds of bridges, from which stress ribbon pedestrian bridges can be distinguished. The main disadvantage of the latter is high deformability, especially under asymmetrical loads. Recently, string structures or their systems have been introduced into bridge building. Numerical and experimental analysis of string behaviour under symmetrical and asymmetrical loads is carried out in the article. Analytical expressions for the calculation of string displacements and tensile forces are presented. The impact of the string pre-stress on the state of its stresses and deformations was evaluated. The assessment of the accuracy of analytical expressions by applying the results of numerical and experimental research is presented. A methodology is proposed for calculating the pre-stressing force taking into account the operational requirements. Three main loading options at different string pre-stress values are analysed. It is worth mentioning that the difference (error) between the analytical and numerical results is not extensive, it does not exceed 3%. It is necessary to notice that in all cases, the analytically obtained results are somewhat higher than FEM (numerically) obtained results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信