论交换环的准最大图式

Murat Alan, Mesut Kılıç, Suat Koç, Ünsal Tekir
{"title":"论交换环的准最大图式","authors":"Murat Alan, Mesut Kılıç, Suat Koç, Ünsal Tekir","doi":"10.7546/crabs.2023.12.01","DOIUrl":null,"url":null,"abstract":"Let $$R$$ be a commutative ring with $$1\\ne 0$$. A proper ideal $$I$$ of $$R$$ is said to be a quasi maximal ideal if for every $$a\\in R-I$$, either $$I+Ra=R$$ or $$I+Ra$$ is a maximal ideal of $$R$$. This class of ideals lies between 2-absorbing ideals and maximal ideals which is different from prime ideals. In addition to give fundamental properties of quasi maximal ideals, we characterize principal ideal UN-rings with $$\\sqrt{0}^2=(0)$$, direct product of two fields, and Noetherian zero dimensional modules in terms of quasi maximal ideals.","PeriodicalId":104760,"journal":{"name":"Proceedings of the Bulgarian Academy of Sciences","volume":"23 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Quasi Maximal Ideals of Commutative Rings\",\"authors\":\"Murat Alan, Mesut Kılıç, Suat Koç, Ünsal Tekir\",\"doi\":\"10.7546/crabs.2023.12.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $$R$$ be a commutative ring with $$1\\\\ne 0$$. A proper ideal $$I$$ of $$R$$ is said to be a quasi maximal ideal if for every $$a\\\\in R-I$$, either $$I+Ra=R$$ or $$I+Ra$$ is a maximal ideal of $$R$$. This class of ideals lies between 2-absorbing ideals and maximal ideals which is different from prime ideals. In addition to give fundamental properties of quasi maximal ideals, we characterize principal ideal UN-rings with $$\\\\sqrt{0}^2=(0)$$, direct product of two fields, and Noetherian zero dimensional modules in terms of quasi maximal ideals.\",\"PeriodicalId\":104760,\"journal\":{\"name\":\"Proceedings of the Bulgarian Academy of Sciences\",\"volume\":\"23 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Bulgarian Academy of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/crabs.2023.12.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Bulgarian Academy of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/crabs.2023.12.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $$R$$ 是一个交换环,有 $$1\ne 0$$。如果对于 R-I$$ 中的每一个 $$a/$,要么 $$I+Ra=R$$ 要么 $$I+Ra$$ 是 $$R$$ 的最大理想,那么 $$R$$ 的一个适当理想 $$I$ 就被称为准最大理想。这一类理想介于 2 吸收理想和最大理想之间,与素理想不同。除了给出准最大理想的基本性质之外,我们还从准最大理想的角度描述了具有 $$\sqrt{0}^2=(0)$$、两个域的直积和诺特零维模块的主理想联合国环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Quasi Maximal Ideals of Commutative Rings
Let $$R$$ be a commutative ring with $$1\ne 0$$. A proper ideal $$I$$ of $$R$$ is said to be a quasi maximal ideal if for every $$a\in R-I$$, either $$I+Ra=R$$ or $$I+Ra$$ is a maximal ideal of $$R$$. This class of ideals lies between 2-absorbing ideals and maximal ideals which is different from prime ideals. In addition to give fundamental properties of quasi maximal ideals, we characterize principal ideal UN-rings with $$\sqrt{0}^2=(0)$$, direct product of two fields, and Noetherian zero dimensional modules in terms of quasi maximal ideals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信