估算油浸式电力变压器纸绝缘残余寿命的新型人工神经网络方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Md. Manzar Nezami, Md. Danish Equbal, Md. Fahim Ansari, Majed A. Alotaibi, Hasmat Malik, Fausto Pedro García Márquez, Mohammad Asef Hossaini
{"title":"估算油浸式电力变压器纸绝缘残余寿命的新型人工神经网络方法","authors":"Md. Manzar Nezami,&nbsp;Md. Danish Equbal,&nbsp;Md. Fahim Ansari,&nbsp;Majed A. Alotaibi,&nbsp;Hasmat Malik,&nbsp;Fausto Pedro García Márquez,&nbsp;Mohammad Asef Hossaini","doi":"10.1049/elp2.12407","DOIUrl":null,"url":null,"abstract":"<p>Avoiding financial losses requires preventing catastrophic oil-filled power transformer breakdowns. Continuous online transformer monitoring is needed. The authors use paper insulation to evaluate transformer health for continuous online transformer monitoring. The study suggests a new artificial intelligence method for estimating paper insulation residual life in oil-immersed power transformers. The four artificial intelligence models use backpropagation-based neural networks to predict paper insulation lifespan. Four primary transformer insulating paper failure indices—degree of polymerisation, 2-furfuraldehyde, carbon monoxide, and carbon dioxide—form the basis of these models. Each model, including the backpropagation-based neural networks, estimates paper insulation life using one failure index, along with moisture and temperature data. Optimisation techniques enhance hidden layer neurons and epoch count for improved performance. Results are validated against literature-based life models, establishing a precise input–output correlation. This method accurately predicts the remaining useable life of power transformer paper insulation, enabling utilities to take proactive measures for safe and efficient transformer operation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12407","citationCount":"0","resultStr":"{\"title\":\"A novel artificial neural network approach for residual life estimation of paper insulation in oil-immersed power transformers\",\"authors\":\"Md. Manzar Nezami,&nbsp;Md. Danish Equbal,&nbsp;Md. Fahim Ansari,&nbsp;Majed A. Alotaibi,&nbsp;Hasmat Malik,&nbsp;Fausto Pedro García Márquez,&nbsp;Mohammad Asef Hossaini\",\"doi\":\"10.1049/elp2.12407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Avoiding financial losses requires preventing catastrophic oil-filled power transformer breakdowns. Continuous online transformer monitoring is needed. The authors use paper insulation to evaluate transformer health for continuous online transformer monitoring. The study suggests a new artificial intelligence method for estimating paper insulation residual life in oil-immersed power transformers. The four artificial intelligence models use backpropagation-based neural networks to predict paper insulation lifespan. Four primary transformer insulating paper failure indices—degree of polymerisation, 2-furfuraldehyde, carbon monoxide, and carbon dioxide—form the basis of these models. Each model, including the backpropagation-based neural networks, estimates paper insulation life using one failure index, along with moisture and temperature data. Optimisation techniques enhance hidden layer neurons and epoch count for improved performance. Results are validated against literature-based life models, establishing a precise input–output correlation. This method accurately predicts the remaining useable life of power transformer paper insulation, enabling utilities to take proactive measures for safe and efficient transformer operation.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12407\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12407\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12407","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

要避免经济损失,就必须防止充油电力变压器发生灾难性故障。这就需要对变压器进行连续在线监测。作者利用纸绝缘评估变压器的健康状况,以实现变压器的连续在线监测。研究提出了一种新的人工智能方法,用于估算油浸式电力变压器的纸绝缘残余寿命。四个人工智能模型使用基于反向传播的神经网络来预测纸绝缘寿命。四个主要的变压器绝缘纸失效指数--聚合度、2-糠醛、一氧化碳和二氧化碳--构成了这些模型的基础。每个模型,包括基于反向传播的神经网络,都使用一个失效指数以及湿度和温度数据来估算绝缘纸的寿命。优化技术增强了隐层神经元和历元次数,从而提高了性能。结果与基于文献的寿命模型进行了验证,建立了精确的输入输出相关性。该方法可准确预测电力变压器绝缘纸的剩余使用寿命,使电力公司能够采取积极措施,确保变压器安全高效地运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A novel artificial neural network approach for residual life estimation of paper insulation in oil-immersed power transformers

A novel artificial neural network approach for residual life estimation of paper insulation in oil-immersed power transformers

Avoiding financial losses requires preventing catastrophic oil-filled power transformer breakdowns. Continuous online transformer monitoring is needed. The authors use paper insulation to evaluate transformer health for continuous online transformer monitoring. The study suggests a new artificial intelligence method for estimating paper insulation residual life in oil-immersed power transformers. The four artificial intelligence models use backpropagation-based neural networks to predict paper insulation lifespan. Four primary transformer insulating paper failure indices—degree of polymerisation, 2-furfuraldehyde, carbon monoxide, and carbon dioxide—form the basis of these models. Each model, including the backpropagation-based neural networks, estimates paper insulation life using one failure index, along with moisture and temperature data. Optimisation techniques enhance hidden layer neurons and epoch count for improved performance. Results are validated against literature-based life models, establishing a precise input–output correlation. This method accurately predicts the remaining useable life of power transformer paper insulation, enabling utilities to take proactive measures for safe and efficient transformer operation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信