半线上线性演化方程的长时渐近线和具有时周期边界条件的辐射条件及实验

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yifeng Mao, Dionyssios Mantzavinos, Mark A. Hoefer
{"title":"半线上线性演化方程的长时渐近线和具有时周期边界条件的辐射条件及实验","authors":"Yifeng Mao,&nbsp;Dionyssios Mantzavinos,&nbsp;Mark A. Hoefer","doi":"10.1111/sapm.12665","DOIUrl":null,"url":null,"abstract":"<p>The asymptotic Dirichlet-to-Neumann (D-N) map is constructed for a class of scalar, constant coefficient, linear, third-order, dispersive equations with asymptotically time/periodic Dirichlet boundary data and zero initial data on the half-line, modeling a wavemaker acting upon an initially quiescent medium. The large time <math>\n <semantics>\n <mi>t</mi>\n <annotation>$t$</annotation>\n </semantics></math> asymptotics for the special cases of the linear Korteweg-de Vries and linear Benjamin–Bona–Mahony (BBM) equations are obtained. The D-N map is proven to be unique if and only if the radiation condition that selects the unique wave number branch of the dispersion relation for a sinusoidal, time-dependent boundary condition holds: (i) for frequencies in a finite interval, the wave number is real and corresponds to positive group velocity, and (ii) for frequencies outside the interval, the wave number is complex with positive imaginary part. For fixed spatial location <math>\n <semantics>\n <mi>x</mi>\n <annotation>$x$</annotation>\n </semantics></math>, the corresponding asymptotic solution is (i) a traveling wave or (ii) a spatially decaying, time-periodic wave. The linearized BBM asymptotics are found to quantitatively agree with viscous core-annular fluid experiments.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-time asymptotics and the radiation condition with time-periodic boundary conditions for linear evolution equations on the half-line and experiment\",\"authors\":\"Yifeng Mao,&nbsp;Dionyssios Mantzavinos,&nbsp;Mark A. Hoefer\",\"doi\":\"10.1111/sapm.12665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The asymptotic Dirichlet-to-Neumann (D-N) map is constructed for a class of scalar, constant coefficient, linear, third-order, dispersive equations with asymptotically time/periodic Dirichlet boundary data and zero initial data on the half-line, modeling a wavemaker acting upon an initially quiescent medium. The large time <math>\\n <semantics>\\n <mi>t</mi>\\n <annotation>$t$</annotation>\\n </semantics></math> asymptotics for the special cases of the linear Korteweg-de Vries and linear Benjamin–Bona–Mahony (BBM) equations are obtained. The D-N map is proven to be unique if and only if the radiation condition that selects the unique wave number branch of the dispersion relation for a sinusoidal, time-dependent boundary condition holds: (i) for frequencies in a finite interval, the wave number is real and corresponds to positive group velocity, and (ii) for frequencies outside the interval, the wave number is complex with positive imaginary part. For fixed spatial location <math>\\n <semantics>\\n <mi>x</mi>\\n <annotation>$x$</annotation>\\n </semantics></math>, the corresponding asymptotic solution is (i) a traveling wave or (ii) a spatially decaying, time-periodic wave. The linearized BBM asymptotics are found to quantitatively agree with viscous core-annular fluid experiments.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

为一类标量、常数系数、线性、三阶、分散方程构建了渐近 Dirichlet 到 Neumann(D-N)图,这些方程具有渐近时间/周期 Dirichlet 边界数据和半线上的零初始数据,模拟了作用于初始静态介质的造浪机。得到了线性 Korteweg-de Vries 和线性 Benjamin-Bona-Mahony (BBM) 方程特例的大时间 t 渐近线。当且仅当为正弦、随时间变化的边界条件选择弥散关系的唯一波数分支的辐射条件成立时,D-N 图才被证明是唯一的:(i) 对于有限区间内的频率,波数为实数并对应于正群速度;(ii) 对于区间外的频率,波数为复数并带有正虚部。对于固定的空间位置 x,相应的渐近解是 (i) 行波或 (ii) 空间衰减的时间周期波。研究发现,线性化的 BBM 渐近线与粘性岩心-环状流体实验在数量上相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-time asymptotics and the radiation condition with time-periodic boundary conditions for linear evolution equations on the half-line and experiment

The asymptotic Dirichlet-to-Neumann (D-N) map is constructed for a class of scalar, constant coefficient, linear, third-order, dispersive equations with asymptotically time/periodic Dirichlet boundary data and zero initial data on the half-line, modeling a wavemaker acting upon an initially quiescent medium. The large time t $t$ asymptotics for the special cases of the linear Korteweg-de Vries and linear Benjamin–Bona–Mahony (BBM) equations are obtained. The D-N map is proven to be unique if and only if the radiation condition that selects the unique wave number branch of the dispersion relation for a sinusoidal, time-dependent boundary condition holds: (i) for frequencies in a finite interval, the wave number is real and corresponds to positive group velocity, and (ii) for frequencies outside the interval, the wave number is complex with positive imaginary part. For fixed spatial location x $x$ , the corresponding asymptotic solution is (i) a traveling wave or (ii) a spatially decaying, time-periodic wave. The linearized BBM asymptotics are found to quantitatively agree with viscous core-annular fluid experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信