Haigang Niu, Shuying Dong, GuoMing Li, Shilun Wu, WenBing Sun
{"title":"二甲双胍通过microRNA-302b-3p靶向硫氧还蛋白相互作用蛋白促进肝细胞癌射频消融缺陷后异常血管的正常化。","authors":"Haigang Niu, Shuying Dong, GuoMing Li, Shilun Wu, WenBing Sun","doi":"10.18388/abp.2023_6296","DOIUrl":null,"url":null,"abstract":"Metformin has shown great promise in the treatment of HCC. Radiofrequency ablation (RFA) deficiency results in recurrence and metastasis of remaining HCC tumors. Here, we aimed to investigate the role and mechanism of metformin in HCC after RFA deficiency. HCC cell line Hep-G2 was selected to simulate RFA deficiency and named HepG2-H cells. After treating cells with different concentrations of metformin (2.5, 5, 10 μM) or transfecting related plasmids, cell proliferation, migration, invasion, apoptosis and angiogenesis were detected, in vitro permeability test was performed, and an angiogenesis-related protein VEGFA was analyzed. The residual HCC model after RFA deficiency was established in mice. Metformin was administered by gavage to detect changes in tumor volume and weight, and CD31 staining was used to observe microvessels. The targeting relationship between miR-302b-3p and TXNIP was demonstrated by the bioinformatics website, dual-luciferase reporter assay, and RNA pull-down assay. The results found that metformin inhibited RFA deficiency-induced growth and angiogenesis of HCC cells in vitro. miR-302b-3p counteracted the therapeutic effect of metformin on RFA deficiency. miR-302b-3p targeted regulation of TXNIP. The up-regulation of TXNIP reversed the effects of overexpression of miR-302b-3p on RFA-deficient HCC cells. Metformin inhibited RFA-deficiency-induced HCC growth and tumor vascular abnormalities in vivo. Overall, metformin promotes the normalization of abnormal blood vessels after RFA deficiency in HCC by miR-302b-3p targeting TXNIP, which can be used to prevent the progression of HCC after RFA.","PeriodicalId":6984,"journal":{"name":"Acta biochimica Polonica","volume":"83 13","pages":"1005-1014"},"PeriodicalIF":1.4000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metformin promotes the normalization of abnormal blood vessels after radiofrequency ablation deficiency in hepatocellular carcinoma by microRNA-302b-3p targeting thioredoxin-interacting protein.\",\"authors\":\"Haigang Niu, Shuying Dong, GuoMing Li, Shilun Wu, WenBing Sun\",\"doi\":\"10.18388/abp.2023_6296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metformin has shown great promise in the treatment of HCC. Radiofrequency ablation (RFA) deficiency results in recurrence and metastasis of remaining HCC tumors. Here, we aimed to investigate the role and mechanism of metformin in HCC after RFA deficiency. HCC cell line Hep-G2 was selected to simulate RFA deficiency and named HepG2-H cells. After treating cells with different concentrations of metformin (2.5, 5, 10 μM) or transfecting related plasmids, cell proliferation, migration, invasion, apoptosis and angiogenesis were detected, in vitro permeability test was performed, and an angiogenesis-related protein VEGFA was analyzed. The residual HCC model after RFA deficiency was established in mice. Metformin was administered by gavage to detect changes in tumor volume and weight, and CD31 staining was used to observe microvessels. The targeting relationship between miR-302b-3p and TXNIP was demonstrated by the bioinformatics website, dual-luciferase reporter assay, and RNA pull-down assay. The results found that metformin inhibited RFA deficiency-induced growth and angiogenesis of HCC cells in vitro. miR-302b-3p counteracted the therapeutic effect of metformin on RFA deficiency. miR-302b-3p targeted regulation of TXNIP. The up-regulation of TXNIP reversed the effects of overexpression of miR-302b-3p on RFA-deficient HCC cells. Metformin inhibited RFA-deficiency-induced HCC growth and tumor vascular abnormalities in vivo. Overall, metformin promotes the normalization of abnormal blood vessels after RFA deficiency in HCC by miR-302b-3p targeting TXNIP, which can be used to prevent the progression of HCC after RFA.\",\"PeriodicalId\":6984,\"journal\":{\"name\":\"Acta biochimica Polonica\",\"volume\":\"83 13\",\"pages\":\"1005-1014\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta biochimica Polonica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.18388/abp.2023_6296\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biochimica Polonica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.18388/abp.2023_6296","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Metformin promotes the normalization of abnormal blood vessels after radiofrequency ablation deficiency in hepatocellular carcinoma by microRNA-302b-3p targeting thioredoxin-interacting protein.
Metformin has shown great promise in the treatment of HCC. Radiofrequency ablation (RFA) deficiency results in recurrence and metastasis of remaining HCC tumors. Here, we aimed to investigate the role and mechanism of metformin in HCC after RFA deficiency. HCC cell line Hep-G2 was selected to simulate RFA deficiency and named HepG2-H cells. After treating cells with different concentrations of metformin (2.5, 5, 10 μM) or transfecting related plasmids, cell proliferation, migration, invasion, apoptosis and angiogenesis were detected, in vitro permeability test was performed, and an angiogenesis-related protein VEGFA was analyzed. The residual HCC model after RFA deficiency was established in mice. Metformin was administered by gavage to detect changes in tumor volume and weight, and CD31 staining was used to observe microvessels. The targeting relationship between miR-302b-3p and TXNIP was demonstrated by the bioinformatics website, dual-luciferase reporter assay, and RNA pull-down assay. The results found that metformin inhibited RFA deficiency-induced growth and angiogenesis of HCC cells in vitro. miR-302b-3p counteracted the therapeutic effect of metformin on RFA deficiency. miR-302b-3p targeted regulation of TXNIP. The up-regulation of TXNIP reversed the effects of overexpression of miR-302b-3p on RFA-deficient HCC cells. Metformin inhibited RFA-deficiency-induced HCC growth and tumor vascular abnormalities in vivo. Overall, metformin promotes the normalization of abnormal blood vessels after RFA deficiency in HCC by miR-302b-3p targeting TXNIP, which can be used to prevent the progression of HCC after RFA.
期刊介绍:
Acta Biochimica Polonica is a journal covering enzymology and metabolism, membranes and bioenergetics, gene structure and expression, protein, nucleic acid and carbohydrate structure and metabolism.