利用 secCellFie 从 omic 数据推断分泌和代谢途径的活性

IF 6.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Helen O. Masson , Mojtaba Samoudi , Caressa M. Robinson , Chih-Chung Kuo , Linus Weiss , Km Shams Ud Doha , Alex Campos , Vijay Tejwani , Hussain Dahodwala , Patrice Menard , Bjorn G. Voldborg , Bradley Robasky , Susan T. Sharfstein , Nathan E. Lewis
{"title":"利用 secCellFie 从 omic 数据推断分泌和代谢途径的活性","authors":"Helen O. Masson ,&nbsp;Mojtaba Samoudi ,&nbsp;Caressa M. Robinson ,&nbsp;Chih-Chung Kuo ,&nbsp;Linus Weiss ,&nbsp;Km Shams Ud Doha ,&nbsp;Alex Campos ,&nbsp;Vijay Tejwani ,&nbsp;Hussain Dahodwala ,&nbsp;Patrice Menard ,&nbsp;Bjorn G. Voldborg ,&nbsp;Bradley Robasky ,&nbsp;Susan T. Sharfstein ,&nbsp;Nathan E. Lewis","doi":"10.1016/j.ymben.2023.12.006","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding protein secretion has considerable importance in biotechnology and important implications in a broad range of normal and pathological conditions including development, immunology, and tissue function. While great progress has been made in studying individual proteins in the secretory pathway, measuring and quantifying mechanistic changes in the pathway's activity remains challenging due to the complexity of the biomolecular systems involved. Systems biology has begun to address this issue with the development of algorithmic tools for analyzing biological pathways; however most of these tools remain accessible only to experts in systems biology with extensive computational experience. Here, we expand upon the user-friendly CellFie tool which quantifies metabolic activity from omic data to include secretory pathway functions, allowing any scientist to infer properties of protein secretion from omic data. We demonstrate how the secretory expansion of CellFie (secCellFie) can help predict metabolic and secretory functions across diverse immune cells, hepatokine secretion in a cell model of NAFLD, and antibody production in Chinese Hamster Ovary cells.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1096717623001799/pdfft?md5=fe08091f516bdd1ac5ce48a3328eea21&pid=1-s2.0-S1096717623001799-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Inferring secretory and metabolic pathway activity from omic data with secCellFie\",\"authors\":\"Helen O. Masson ,&nbsp;Mojtaba Samoudi ,&nbsp;Caressa M. Robinson ,&nbsp;Chih-Chung Kuo ,&nbsp;Linus Weiss ,&nbsp;Km Shams Ud Doha ,&nbsp;Alex Campos ,&nbsp;Vijay Tejwani ,&nbsp;Hussain Dahodwala ,&nbsp;Patrice Menard ,&nbsp;Bjorn G. Voldborg ,&nbsp;Bradley Robasky ,&nbsp;Susan T. Sharfstein ,&nbsp;Nathan E. Lewis\",\"doi\":\"10.1016/j.ymben.2023.12.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding protein secretion has considerable importance in biotechnology and important implications in a broad range of normal and pathological conditions including development, immunology, and tissue function. While great progress has been made in studying individual proteins in the secretory pathway, measuring and quantifying mechanistic changes in the pathway's activity remains challenging due to the complexity of the biomolecular systems involved. Systems biology has begun to address this issue with the development of algorithmic tools for analyzing biological pathways; however most of these tools remain accessible only to experts in systems biology with extensive computational experience. Here, we expand upon the user-friendly CellFie tool which quantifies metabolic activity from omic data to include secretory pathway functions, allowing any scientist to infer properties of protein secretion from omic data. We demonstrate how the secretory expansion of CellFie (secCellFie) can help predict metabolic and secretory functions across diverse immune cells, hepatokine secretion in a cell model of NAFLD, and antibody production in Chinese Hamster Ovary cells.</p></div>\",\"PeriodicalId\":18483,\"journal\":{\"name\":\"Metabolic engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1096717623001799/pdfft?md5=fe08091f516bdd1ac5ce48a3328eea21&pid=1-s2.0-S1096717623001799-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096717623001799\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717623001799","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解蛋白质分泌在生物技术中具有相当重要的意义,对包括发育、免疫学和组织功能在内的各种正常和病理情况也有重要影响。虽然在研究分泌途径中的单个蛋白质方面已经取得了很大进展,但由于涉及的生物分子系统非常复杂,因此测量和量化该途径活性的机理变化仍然具有挑战性。随着用于分析生物通路的算法工具的开发,系统生物学已开始解决这一问题;然而,这些工具大多只有具有丰富计算经验的系统生物学专家才能使用。在这里,我们扩展了用户友好的 CellFie 工具,该工具可从 omic 数据中量化代谢活动,并将分泌途径功能纳入其中,使任何科学家都能从 omic 数据中推断蛋白质分泌的特性。我们展示了 CellFie 的分泌扩展(secCellFie)如何帮助预测各种免疫细胞的代谢和分泌功能、非酒精性脂肪肝细胞模型中肝脏激素的分泌以及中国仓鼠卵巢细胞中抗体的产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring secretory and metabolic pathway activity from omic data with secCellFie

Understanding protein secretion has considerable importance in biotechnology and important implications in a broad range of normal and pathological conditions including development, immunology, and tissue function. While great progress has been made in studying individual proteins in the secretory pathway, measuring and quantifying mechanistic changes in the pathway's activity remains challenging due to the complexity of the biomolecular systems involved. Systems biology has begun to address this issue with the development of algorithmic tools for analyzing biological pathways; however most of these tools remain accessible only to experts in systems biology with extensive computational experience. Here, we expand upon the user-friendly CellFie tool which quantifies metabolic activity from omic data to include secretory pathway functions, allowing any scientist to infer properties of protein secretion from omic data. We demonstrate how the secretory expansion of CellFie (secCellFie) can help predict metabolic and secretory functions across diverse immune cells, hepatokine secretion in a cell model of NAFLD, and antibody production in Chinese Hamster Ovary cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolic engineering
Metabolic engineering 工程技术-生物工程与应用微生物
CiteScore
15.60
自引率
6.00%
发文量
140
审稿时长
44 days
期刊介绍: Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信