湖泊水和沉积物磷模型的直观模糊微分方程方法

Ashish Acharya , Sanjoy Mahato , Nikhilesh Sil , Animesh Mahata , Supriya Mukherjee , Sanat Kumar Mahato , Banamali Roy
{"title":"湖泊水和沉积物磷模型的直观模糊微分方程方法","authors":"Ashish Acharya ,&nbsp;Sanjoy Mahato ,&nbsp;Nikhilesh Sil ,&nbsp;Animesh Mahata ,&nbsp;Supriya Mukherjee ,&nbsp;Sanat Kumar Mahato ,&nbsp;Banamali Roy","doi":"10.1016/j.health.2023.100294","DOIUrl":null,"url":null,"abstract":"<div><p>Intuitionistic fuzzy sets cannot consider the degree of indeterminacy (i.e., the degree of hesitation). This study presents an intuitionistic fuzzy differential equation approach for the lake water and sediment phosphorus model. We examine the proposed model by assuming generalized trapezoidal intuitionistic fuzzy numbers for the initial condition. Feasible equilibrium points, along with their stability criteria, are evaluated. We describe the characteristics of intuitionistic fuzzy solutions and clarify the difference between strong and weak intuitionistic fuzzy solutions. Numerical simulations are performed in MATLAB to validate the model results.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100294"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442523001612/pdfft?md5=e15c005e52f8ed0bf87df0d41f792549&pid=1-s2.0-S2772442523001612-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An intuitionistic fuzzy differential equation approach for the lake water and sediment phosphorus model\",\"authors\":\"Ashish Acharya ,&nbsp;Sanjoy Mahato ,&nbsp;Nikhilesh Sil ,&nbsp;Animesh Mahata ,&nbsp;Supriya Mukherjee ,&nbsp;Sanat Kumar Mahato ,&nbsp;Banamali Roy\",\"doi\":\"10.1016/j.health.2023.100294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Intuitionistic fuzzy sets cannot consider the degree of indeterminacy (i.e., the degree of hesitation). This study presents an intuitionistic fuzzy differential equation approach for the lake water and sediment phosphorus model. We examine the proposed model by assuming generalized trapezoidal intuitionistic fuzzy numbers for the initial condition. Feasible equilibrium points, along with their stability criteria, are evaluated. We describe the characteristics of intuitionistic fuzzy solutions and clarify the difference between strong and weak intuitionistic fuzzy solutions. Numerical simulations are performed in MATLAB to validate the model results.</p></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"5 \",\"pages\":\"Article 100294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772442523001612/pdfft?md5=e15c005e52f8ed0bf87df0d41f792549&pid=1-s2.0-S2772442523001612-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442523001612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442523001612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

直观模糊集无法考虑不确定程度(即犹豫程度)。本研究提出了一种湖泊水和沉积物磷模型的直观模糊微分方程方法。我们通过假设初始条件为广义梯形直觉模糊数来检验所提出的模型。评估了可行的平衡点及其稳定性标准。我们描述了直觉模糊解的特点,并阐明了强直觉模糊解和弱直觉模糊解之间的区别。我们使用 MATLAB 进行了数值模拟,以验证模型结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An intuitionistic fuzzy differential equation approach for the lake water and sediment phosphorus model

Intuitionistic fuzzy sets cannot consider the degree of indeterminacy (i.e., the degree of hesitation). This study presents an intuitionistic fuzzy differential equation approach for the lake water and sediment phosphorus model. We examine the proposed model by assuming generalized trapezoidal intuitionistic fuzzy numbers for the initial condition. Feasible equilibrium points, along with their stability criteria, are evaluated. We describe the characteristics of intuitionistic fuzzy solutions and clarify the difference between strong and weak intuitionistic fuzzy solutions. Numerical simulations are performed in MATLAB to validate the model results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信