Bharath Chelluboina, Soomin Jeong, Charles Kozhikkadan Davis, Suresh L Mehta, Raghu Vemuganti
{"title":"遵循 STAIR 标准的脑卒中后静脉注射 miR-21 模拟物的治疗潜力","authors":"Bharath Chelluboina, Soomin Jeong, Charles Kozhikkadan Davis, Suresh L Mehta, Raghu Vemuganti","doi":"10.1007/s12975-023-01223-8","DOIUrl":null,"url":null,"abstract":"<p><p>The microRNA-21 (miR-21) levels in the brain are crucial in determining post-stroke brain damage and recovery. The miR-21 exerts neuroprotection by targeting mRNAs that translate proteins that mediate brain damage. We currently determined the efficacy and efficiency of intravenously administered miR-21 mimic after focal cerebral ischemia in mice. Adult male mice were intravenously administered with either control mimic or miR-21 mimic at 5 min/2 h after reperfusion following 1 h transient middle cerebral artery occlusion to determine the therapeutic window of miR-21 mimic. Adult female, type-2 diabetic male, aged male, and aged female mice were administered with control/miR-21 mimic at 5 min after reperfusion following 35 min/1 h transient middle cerebral artery occlusion. Early administration of miR-21 mimic significantly reduced brain damage and promoted long-term recovery after stroke. Further, miR-21 mimic is more effective in males than in females subjected to stroke. However, delayed treatment with miR-21 mimic is not efficacious, and type-2 diabetic subjects show no improvement with miR-21 mimic treatment.</p>","PeriodicalId":23237,"journal":{"name":"Translational Stroke Research","volume":" ","pages":"403-409"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365116/pdf/","citationCount":"0","resultStr":"{\"title\":\"Therapeutic Potential of Intravenous miR-21 Mimic after Stroke Following STAIR Criteria.\",\"authors\":\"Bharath Chelluboina, Soomin Jeong, Charles Kozhikkadan Davis, Suresh L Mehta, Raghu Vemuganti\",\"doi\":\"10.1007/s12975-023-01223-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The microRNA-21 (miR-21) levels in the brain are crucial in determining post-stroke brain damage and recovery. The miR-21 exerts neuroprotection by targeting mRNAs that translate proteins that mediate brain damage. We currently determined the efficacy and efficiency of intravenously administered miR-21 mimic after focal cerebral ischemia in mice. Adult male mice were intravenously administered with either control mimic or miR-21 mimic at 5 min/2 h after reperfusion following 1 h transient middle cerebral artery occlusion to determine the therapeutic window of miR-21 mimic. Adult female, type-2 diabetic male, aged male, and aged female mice were administered with control/miR-21 mimic at 5 min after reperfusion following 35 min/1 h transient middle cerebral artery occlusion. Early administration of miR-21 mimic significantly reduced brain damage and promoted long-term recovery after stroke. Further, miR-21 mimic is more effective in males than in females subjected to stroke. However, delayed treatment with miR-21 mimic is not efficacious, and type-2 diabetic subjects show no improvement with miR-21 mimic treatment.</p>\",\"PeriodicalId\":23237,\"journal\":{\"name\":\"Translational Stroke Research\",\"volume\":\" \",\"pages\":\"403-409\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11365116/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Stroke Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12975-023-01223-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Stroke Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12975-023-01223-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Therapeutic Potential of Intravenous miR-21 Mimic after Stroke Following STAIR Criteria.
The microRNA-21 (miR-21) levels in the brain are crucial in determining post-stroke brain damage and recovery. The miR-21 exerts neuroprotection by targeting mRNAs that translate proteins that mediate brain damage. We currently determined the efficacy and efficiency of intravenously administered miR-21 mimic after focal cerebral ischemia in mice. Adult male mice were intravenously administered with either control mimic or miR-21 mimic at 5 min/2 h after reperfusion following 1 h transient middle cerebral artery occlusion to determine the therapeutic window of miR-21 mimic. Adult female, type-2 diabetic male, aged male, and aged female mice were administered with control/miR-21 mimic at 5 min after reperfusion following 35 min/1 h transient middle cerebral artery occlusion. Early administration of miR-21 mimic significantly reduced brain damage and promoted long-term recovery after stroke. Further, miR-21 mimic is more effective in males than in females subjected to stroke. However, delayed treatment with miR-21 mimic is not efficacious, and type-2 diabetic subjects show no improvement with miR-21 mimic treatment.
期刊介绍:
Translational Stroke Research covers basic, translational, and clinical studies. The Journal emphasizes novel approaches to help both to understand clinical phenomenon through basic science tools, and to translate basic science discoveries into the development of new strategies for the prevention, assessment, treatment, and enhancement of central nervous system repair after stroke and other forms of neurotrauma.
Translational Stroke Research focuses on translational research and is relevant to both basic scientists and physicians, including but not restricted to neuroscientists, vascular biologists, neurologists, neuroimagers, and neurosurgeons.