Gui-Lan Chen, Jing-Yi Li, Xin Chen, Jia-Wei Liu, Qian Zhang, Jie-Yu Liu, Jing Wen, Na Wang, Ming Lei, Jun-Peng Wei, Li Yi, Jia-Jia Li, Yu-Peng Ling, He-Qiang Yi, Zhenying Hu, Jingjing Duan, Jin Zhang, Bo Zeng
{"title":"机械敏感通道 TMEM63A 和 TMEM63B 介导肺充气诱导的表面活性物质分泌。","authors":"Gui-Lan Chen, Jing-Yi Li, Xin Chen, Jia-Wei Liu, Qian Zhang, Jie-Yu Liu, Jing Wen, Na Wang, Ming Lei, Jun-Peng Wei, Li Yi, Jia-Jia Li, Yu-Peng Ling, He-Qiang Yi, Zhenying Hu, Jingjing Duan, Jin Zhang, Bo Zeng","doi":"10.1172/JCI174508","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary surfactant is a lipoprotein complex lining the alveolar surface to decrease the surface tension and facilitate inspiration. Surfactant deficiency is often seen in premature infants and in children and adults with respiratory distress syndrome. Mechanical stretch of alveolar type 2 epithelial (AT2) cells during lung expansion is the primary physiological factor that stimulates surfactant secretion; however, it is unclear whether there is a mechanosensor dedicated to this process. Here, we show that loss of the mechanosensitive channels TMEM63A and TMEM63B (TMEM63A/B) resulted in atelectasis and respiratory failure in mice due to a deficit of surfactant secretion. TMEM63A/B were predominantly localized at the limiting membrane of the lamellar body (LB), a lysosome-related organelle that stores pulmonary surfactant and ATP in AT2 cells. Activation of TMEM63A/B channels during cell stretch facilitated the release of surfactant and ATP from LBs fused with the plasma membrane. The released ATP evoked Ca2+ signaling in AT2 cells and potentiated exocytic fusion of more LBs. Our study uncovered a vital physiological function of TMEM63 mechanosensitive channels in preparing the lungs for the first breath at birth and maintaining respiration throughout life.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904053/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion.\",\"authors\":\"Gui-Lan Chen, Jing-Yi Li, Xin Chen, Jia-Wei Liu, Qian Zhang, Jie-Yu Liu, Jing Wen, Na Wang, Ming Lei, Jun-Peng Wei, Li Yi, Jia-Jia Li, Yu-Peng Ling, He-Qiang Yi, Zhenying Hu, Jingjing Duan, Jin Zhang, Bo Zeng\",\"doi\":\"10.1172/JCI174508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pulmonary surfactant is a lipoprotein complex lining the alveolar surface to decrease the surface tension and facilitate inspiration. Surfactant deficiency is often seen in premature infants and in children and adults with respiratory distress syndrome. Mechanical stretch of alveolar type 2 epithelial (AT2) cells during lung expansion is the primary physiological factor that stimulates surfactant secretion; however, it is unclear whether there is a mechanosensor dedicated to this process. Here, we show that loss of the mechanosensitive channels TMEM63A and TMEM63B (TMEM63A/B) resulted in atelectasis and respiratory failure in mice due to a deficit of surfactant secretion. TMEM63A/B were predominantly localized at the limiting membrane of the lamellar body (LB), a lysosome-related organelle that stores pulmonary surfactant and ATP in AT2 cells. Activation of TMEM63A/B channels during cell stretch facilitated the release of surfactant and ATP from LBs fused with the plasma membrane. The released ATP evoked Ca2+ signaling in AT2 cells and potentiated exocytic fusion of more LBs. Our study uncovered a vital physiological function of TMEM63 mechanosensitive channels in preparing the lungs for the first breath at birth and maintaining respiration throughout life.</p>\",\"PeriodicalId\":15469,\"journal\":{\"name\":\"Journal of Clinical Investigation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904053/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Investigation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/JCI174508\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI174508","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
肺表面活性物质是一种脂蛋白复合物,衬于肺泡表面,可降低表面张力并促进吸气。早产儿以及患有呼吸窘迫综合征的儿童和成人经常会出现表面活性物质缺乏症。肺扩张过程中肺泡 2 型上皮细胞(AT2)的机械拉伸是刺激表面活性物质分泌的主要生理因素;然而,目前还不清楚是否存在专门用于这一过程的机械传感器。在这里,我们发现机械敏感通道 TMEM63A 和 TMEM63B 的缺失会导致小鼠因表面活性物质分泌不足而出现肺不张和呼吸衰竭。TMEM63A/B主要定位于片层体的边缘膜,片层体是一种溶酶体相关细胞器,在AT2细胞中储存肺表面活性物质和ATP。在细胞拉伸过程中激活 TMEM63A/B 通道可促进表面活性物质和 ATP 从与质膜融合的片层体中释放出来。释放的 ATP 在 AT2 细胞中诱发 Ca2+ 信号传导,并促进更多片层体的外排融合。我们的研究揭示了TMEM63机械敏感通道的重要生理功能,它使肺部为出生后的第一次呼吸做好准备,并在整个生命过程中维持呼吸。
Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion.
Pulmonary surfactant is a lipoprotein complex lining the alveolar surface to decrease the surface tension and facilitate inspiration. Surfactant deficiency is often seen in premature infants and in children and adults with respiratory distress syndrome. Mechanical stretch of alveolar type 2 epithelial (AT2) cells during lung expansion is the primary physiological factor that stimulates surfactant secretion; however, it is unclear whether there is a mechanosensor dedicated to this process. Here, we show that loss of the mechanosensitive channels TMEM63A and TMEM63B (TMEM63A/B) resulted in atelectasis and respiratory failure in mice due to a deficit of surfactant secretion. TMEM63A/B were predominantly localized at the limiting membrane of the lamellar body (LB), a lysosome-related organelle that stores pulmonary surfactant and ATP in AT2 cells. Activation of TMEM63A/B channels during cell stretch facilitated the release of surfactant and ATP from LBs fused with the plasma membrane. The released ATP evoked Ca2+ signaling in AT2 cells and potentiated exocytic fusion of more LBs. Our study uncovered a vital physiological function of TMEM63 mechanosensitive channels in preparing the lungs for the first breath at birth and maintaining respiration throughout life.
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.