{"title":"在热胁迫条件下,缺乏线粒体靶向序列的柠檬酸合成酶在Hsp70/Hsp40伴侣缺陷细胞中的降解受到抑制。","authors":"Mayuko Hayashi, Tomoyuki Kawarasaki, Kunio Nakatsukasa","doi":"10.1093/femsyr/foad054","DOIUrl":null,"url":null,"abstract":"<p><p>Most nucleus-encoded mitochondrial precursor proteins are synthesized in the cytosol and imported into mitochondria in a post-translational manner. In recent years, the quality control mechanisms of nonimported mitochondrial proteins have been intensively studied. In a previous study, we established that in budding yeast a mutant form of citrate synthase 1 (N∆Cit1) that lacks the N-terminal mitochondrial targeting sequence, and therefore mislocalizes to the cytosol is targeted for proteasomal degradation by the SCFUcc1 ubiquitin ligase complex. Here, we show that Hsp70 and Hsp40 chaperones (Ssa1 and Ydj1 in yeast, respectively) are required for N∆Cit1 degradation under heat stress conditions. In the absence of Hsp70 function, a portion of N∆Cit1-GFP formed insoluble aggregates and cytosolic foci. However, the extent of ubiquitination of N∆Cit1 was unaffected, implying that Hsp70/Hsp40 chaperones are involved in the postubiquitination step of N∆Cit1 degradation. Intriguingly, degradation of cytosolic/peroxisomal gluconeogenic citrate synthase (Cit2), an endogenous substrate for SCFUcc1-mediated proteasomal degradation, was not highly dependent on Hsp70 even under heat stress conditions. These results suggest that mitochondrial citrate synthase is thermally vulnerable in the cytosol, where Hsp70/Hsp40 chaperones are required to facilitate its degradation.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786195/pdf/","citationCount":"0","resultStr":"{\"title\":\"Degradation of citrate synthase lacking the mitochondrial targeting sequence is inhibited in cells defective in Hsp70/Hsp40 chaperones under heat stress conditions.\",\"authors\":\"Mayuko Hayashi, Tomoyuki Kawarasaki, Kunio Nakatsukasa\",\"doi\":\"10.1093/femsyr/foad054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most nucleus-encoded mitochondrial precursor proteins are synthesized in the cytosol and imported into mitochondria in a post-translational manner. In recent years, the quality control mechanisms of nonimported mitochondrial proteins have been intensively studied. In a previous study, we established that in budding yeast a mutant form of citrate synthase 1 (N∆Cit1) that lacks the N-terminal mitochondrial targeting sequence, and therefore mislocalizes to the cytosol is targeted for proteasomal degradation by the SCFUcc1 ubiquitin ligase complex. Here, we show that Hsp70 and Hsp40 chaperones (Ssa1 and Ydj1 in yeast, respectively) are required for N∆Cit1 degradation under heat stress conditions. In the absence of Hsp70 function, a portion of N∆Cit1-GFP formed insoluble aggregates and cytosolic foci. However, the extent of ubiquitination of N∆Cit1 was unaffected, implying that Hsp70/Hsp40 chaperones are involved in the postubiquitination step of N∆Cit1 degradation. Intriguingly, degradation of cytosolic/peroxisomal gluconeogenic citrate synthase (Cit2), an endogenous substrate for SCFUcc1-mediated proteasomal degradation, was not highly dependent on Hsp70 even under heat stress conditions. These results suggest that mitochondrial citrate synthase is thermally vulnerable in the cytosol, where Hsp70/Hsp40 chaperones are required to facilitate its degradation.</p>\",\"PeriodicalId\":12290,\"journal\":{\"name\":\"FEMS yeast research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10786195/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS yeast research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsyr/foad054\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foad054","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Degradation of citrate synthase lacking the mitochondrial targeting sequence is inhibited in cells defective in Hsp70/Hsp40 chaperones under heat stress conditions.
Most nucleus-encoded mitochondrial precursor proteins are synthesized in the cytosol and imported into mitochondria in a post-translational manner. In recent years, the quality control mechanisms of nonimported mitochondrial proteins have been intensively studied. In a previous study, we established that in budding yeast a mutant form of citrate synthase 1 (N∆Cit1) that lacks the N-terminal mitochondrial targeting sequence, and therefore mislocalizes to the cytosol is targeted for proteasomal degradation by the SCFUcc1 ubiquitin ligase complex. Here, we show that Hsp70 and Hsp40 chaperones (Ssa1 and Ydj1 in yeast, respectively) are required for N∆Cit1 degradation under heat stress conditions. In the absence of Hsp70 function, a portion of N∆Cit1-GFP formed insoluble aggregates and cytosolic foci. However, the extent of ubiquitination of N∆Cit1 was unaffected, implying that Hsp70/Hsp40 chaperones are involved in the postubiquitination step of N∆Cit1 degradation. Intriguingly, degradation of cytosolic/peroxisomal gluconeogenic citrate synthase (Cit2), an endogenous substrate for SCFUcc1-mediated proteasomal degradation, was not highly dependent on Hsp70 even under heat stress conditions. These results suggest that mitochondrial citrate synthase is thermally vulnerable in the cytosol, where Hsp70/Hsp40 chaperones are required to facilitate its degradation.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.