羟肟酸形成的酶催化剂:微型综述

IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL
Dr. Rahul Vikram Singh
{"title":"羟肟酸形成的酶催化剂:微型综述","authors":"Dr. Rahul Vikram Singh","doi":"10.1002/cben.202300059","DOIUrl":null,"url":null,"abstract":"<p>In recent years, biocatalysts have emerged as crucial tool in organic synthesis, particularly for the production of drug intermediates and precursors, e.g., the synthesis of hydroxamic acids. Traditionally, hydroxamic acids were synthesized using organic chemistry methods. However, with the growing emphasis on sustainable and environment-friendly practices, the chemical industry has increasingly turned towards green synthesis approaches. The significance of hydroxamic acids in medicinal chemistry has also contributed to the changing trends. Following the approval of certain hydroxamic acids as histone deacetylase (HDAC) inhibitors for cancer treatment by the Food and Drug Administration (US-FDA), there has been a renewed focus on their synthesis and the development of derivatives with improved properties. As an alternative route, amidases have emerged as promising biocatalysts for hydroxamic acid synthesis through their acyltransferase activity. Recent advancements in the synthesis approaches for hydroxamic acids are reviewed. The biocatalytic routes are explored, emphasizing the use of amidases and their acyltransferase activity. The scope and potential applications of this chemoenzymatic approach in synthesizing various hydroxamic acids and their derivatives are discussed. Such advancements have the potential to revolutionize the production of these important compounds, making the synthesis process more sustainable, efficient, and economically viable.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 2","pages":"339-347"},"PeriodicalIF":6.2000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enzymatic Catalysts for Hydroxamic Acid Formation: A Mini-Review\",\"authors\":\"Dr. Rahul Vikram Singh\",\"doi\":\"10.1002/cben.202300059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, biocatalysts have emerged as crucial tool in organic synthesis, particularly for the production of drug intermediates and precursors, e.g., the synthesis of hydroxamic acids. Traditionally, hydroxamic acids were synthesized using organic chemistry methods. However, with the growing emphasis on sustainable and environment-friendly practices, the chemical industry has increasingly turned towards green synthesis approaches. The significance of hydroxamic acids in medicinal chemistry has also contributed to the changing trends. Following the approval of certain hydroxamic acids as histone deacetylase (HDAC) inhibitors for cancer treatment by the Food and Drug Administration (US-FDA), there has been a renewed focus on their synthesis and the development of derivatives with improved properties. As an alternative route, amidases have emerged as promising biocatalysts for hydroxamic acid synthesis through their acyltransferase activity. Recent advancements in the synthesis approaches for hydroxamic acids are reviewed. The biocatalytic routes are explored, emphasizing the use of amidases and their acyltransferase activity. The scope and potential applications of this chemoenzymatic approach in synthesizing various hydroxamic acids and their derivatives are discussed. Such advancements have the potential to revolutionize the production of these important compounds, making the synthesis process more sustainable, efficient, and economically viable.</p>\",\"PeriodicalId\":48623,\"journal\":{\"name\":\"ChemBioEng Reviews\",\"volume\":\"11 2\",\"pages\":\"339-347\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioEng Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300059\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202300059","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,生物催化剂已成为有机合成,特别是生产药物中间体和前体(如合成羟肟酸)的重要工具。传统上,羟肟酸是用有机化学方法合成的。然而,随着对可持续发展和环境友好型实践的日益重视,化学工业越来越多地转向绿色合成方法。羟肟酸在药物化学中的重要作用也推动了这一趋势的变化。在美国食品药品管理局(US-FDA)批准某些羟肟酸作为组蛋白去乙酰化酶(HDAC)抑制剂用于癌症治疗后,人们开始重新关注羟肟酸的合成以及具有更好性质的衍生物的开发。作为一种替代途径,酰胺酶通过其酰基转移酶活性,已成为羟肟酸合成的一种有前途的生物催化剂。本文综述了羟肟酸合成方法的最新进展。探讨了生物催化路线,强调了酰胺酶及其酰基转移酶活性的使用。讨论了这种化学酶法在合成各种羟肟酸及其衍生物方面的应用范围和潜力。这些进步有可能彻底改变这些重要化合物的生产,使合成过程更加可持续、高效和经济可行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enzymatic Catalysts for Hydroxamic Acid Formation: A Mini-Review

Enzymatic Catalysts for Hydroxamic Acid Formation: A Mini-Review

Enzymatic Catalysts for Hydroxamic Acid Formation: A Mini-Review

In recent years, biocatalysts have emerged as crucial tool in organic synthesis, particularly for the production of drug intermediates and precursors, e.g., the synthesis of hydroxamic acids. Traditionally, hydroxamic acids were synthesized using organic chemistry methods. However, with the growing emphasis on sustainable and environment-friendly practices, the chemical industry has increasingly turned towards green synthesis approaches. The significance of hydroxamic acids in medicinal chemistry has also contributed to the changing trends. Following the approval of certain hydroxamic acids as histone deacetylase (HDAC) inhibitors for cancer treatment by the Food and Drug Administration (US-FDA), there has been a renewed focus on their synthesis and the development of derivatives with improved properties. As an alternative route, amidases have emerged as promising biocatalysts for hydroxamic acid synthesis through their acyltransferase activity. Recent advancements in the synthesis approaches for hydroxamic acids are reviewed. The biocatalytic routes are explored, emphasizing the use of amidases and their acyltransferase activity. The scope and potential applications of this chemoenzymatic approach in synthesizing various hydroxamic acids and their derivatives are discussed. Such advancements have the potential to revolutionize the production of these important compounds, making the synthesis process more sustainable, efficient, and economically viable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemBioEng Reviews
ChemBioEng Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍: Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信