图中(完全)支配的最佳线性-Vizing 关系

IF 0.9 3区 数学 Q2 MATHEMATICS
Michael A. Henning, Paul Horn
{"title":"图中(完全)支配的最佳线性-Vizing 关系","authors":"Michael A. Henning,&nbsp;Paul Horn","doi":"10.1002/jgt.23070","DOIUrl":null,"url":null,"abstract":"<p>A total dominating set in a graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a set of vertices of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that every vertex is adjacent to a vertex of the set. The total domination number <math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>t</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\gamma }_{t}(G)$</annotation>\n </semantics></math> is the minimum cardinality of a total dominating set in <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. In this paper, we study the following open problem posed by Yeo. For each <math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}\\ge 3$</annotation>\n </semantics></math>, find the smallest value, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n </mrow>\n <annotation> ${r}_{{\\rm{\\Delta }}}$</annotation>\n </semantics></math>, such that every connected graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of order at least 3, of order <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, size <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math>, total domination number <math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n <annotation> ${\\gamma }_{t}$</annotation>\n </semantics></math>, and bounded maximum degree <math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n </mrow>\n <annotation> ${\\rm{\\Delta }}$</annotation>\n </semantics></math>, satisfies <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>1</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>Δ</mi>\n \n <mo>+</mo>\n \n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <msub>\n <mi>γ</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $m\\le \\frac{1}{2}({\\rm{\\Delta }}+{r}_{{\\rm{\\Delta }}})(n-{\\gamma }_{t})$</annotation>\n </semantics></math>. Henning showed that <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mi>Δ</mi>\n </mrow>\n <annotation> ${r}_{{\\rm{\\Delta }}}\\le {\\rm{\\Delta }}$</annotation>\n </semantics></math> for all <math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}\\ge 3$</annotation>\n </semantics></math>. Yeo significantly improved this result and showed that <math>\n <semantics>\n <mrow>\n <mn>0.1</mn>\n \n <mi>ln</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>&lt;</mo>\n \n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <msqrt>\n <mi>Δ</mi>\n </msqrt>\n </mrow>\n <annotation> $0.1\\mathrm{ln}({\\rm{\\Delta }})\\lt {r}_{{\\rm{\\Delta }}}\\le 2\\sqrt{{\\rm{\\Delta }}}$</annotation>\n </semantics></math> for all <math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}\\ge 3$</annotation>\n </semantics></math>, and posed as an open problem to determine “whether <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n </mrow>\n <annotation> ${r}_{{\\rm{\\Delta }}}$</annotation>\n </semantics></math> grows proportionally with <math>\n <semantics>\n <mrow>\n <mi>ln</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\mathrm{ln}({\\rm{\\Delta }})$</annotation>\n </semantics></math> or <math>\n <semantics>\n <mrow>\n <msqrt>\n <mi>Δ</mi>\n </msqrt>\n </mrow>\n <annotation> $\\sqrt{{\\rm{\\Delta }}}$</annotation>\n </semantics></math> or some completely different function.” In this paper, we determine the growth of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n </mrow>\n <annotation> ${r}_{{\\rm{\\Delta }}}$</annotation>\n </semantics></math>, and show that <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n </mrow>\n <annotation> ${r}_{{\\rm{\\Delta }}}$</annotation>\n </semantics></math> is asymptotically <math>\n <semantics>\n <mrow>\n <mi>ln</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\mathrm{ln}({\\rm{\\Delta }})$</annotation>\n </semantics></math> and likewise determine the asymptotics of the analogous constant for standard domination.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal linear-Vizing relationships for (total) domination in graphs\",\"authors\":\"Michael A. Henning,&nbsp;Paul Horn\",\"doi\":\"10.1002/jgt.23070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A total dominating set in a graph <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is a set of vertices of <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> such that every vertex is adjacent to a vertex of the set. The total domination number <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>γ</mi>\\n \\n <mi>t</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\gamma }_{t}(G)$</annotation>\\n </semantics></math> is the minimum cardinality of a total dominating set in <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. In this paper, we study the following open problem posed by Yeo. For each <math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}\\\\ge 3$</annotation>\\n </semantics></math>, find the smallest value, <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mi>Δ</mi>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{{\\\\rm{\\\\Delta }}}$</annotation>\\n </semantics></math>, such that every connected graph <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> of order at least 3, of order <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>, size <math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation> $m$</annotation>\\n </semantics></math>, total domination number <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>γ</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\gamma }_{t}$</annotation>\\n </semantics></math>, and bounded maximum degree <math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}$</annotation>\\n </semantics></math>, satisfies <math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n \\n <mo>≤</mo>\\n \\n <mfrac>\\n <mn>1</mn>\\n \\n <mn>2</mn>\\n </mfrac>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>Δ</mi>\\n \\n <mo>+</mo>\\n \\n <msub>\\n <mi>r</mi>\\n \\n <mi>Δ</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <msub>\\n <mi>γ</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $m\\\\le \\\\frac{1}{2}({\\\\rm{\\\\Delta }}+{r}_{{\\\\rm{\\\\Delta }}})(n-{\\\\gamma }_{t})$</annotation>\\n </semantics></math>. Henning showed that <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mi>Δ</mi>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <mi>Δ</mi>\\n </mrow>\\n <annotation> ${r}_{{\\\\rm{\\\\Delta }}}\\\\le {\\\\rm{\\\\Delta }}$</annotation>\\n </semantics></math> for all <math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}\\\\ge 3$</annotation>\\n </semantics></math>. Yeo significantly improved this result and showed that <math>\\n <semantics>\\n <mrow>\\n <mn>0.1</mn>\\n \\n <mi>ln</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>&lt;</mo>\\n \\n <msub>\\n <mi>r</mi>\\n \\n <mi>Δ</mi>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n \\n <msqrt>\\n <mi>Δ</mi>\\n </msqrt>\\n </mrow>\\n <annotation> $0.1\\\\mathrm{ln}({\\\\rm{\\\\Delta }})\\\\lt {r}_{{\\\\rm{\\\\Delta }}}\\\\le 2\\\\sqrt{{\\\\rm{\\\\Delta }}}$</annotation>\\n </semantics></math> for all <math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}\\\\ge 3$</annotation>\\n </semantics></math>, and posed as an open problem to determine “whether <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mi>Δ</mi>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{{\\\\rm{\\\\Delta }}}$</annotation>\\n </semantics></math> grows proportionally with <math>\\n <semantics>\\n <mrow>\\n <mi>ln</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\mathrm{ln}({\\\\rm{\\\\Delta }})$</annotation>\\n </semantics></math> or <math>\\n <semantics>\\n <mrow>\\n <msqrt>\\n <mi>Δ</mi>\\n </msqrt>\\n </mrow>\\n <annotation> $\\\\sqrt{{\\\\rm{\\\\Delta }}}$</annotation>\\n </semantics></math> or some completely different function.” In this paper, we determine the growth of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mi>Δ</mi>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{{\\\\rm{\\\\Delta }}}$</annotation>\\n </semantics></math>, and show that <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mi>Δ</mi>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{{\\\\rm{\\\\Delta }}}$</annotation>\\n </semantics></math> is asymptotically <math>\\n <semantics>\\n <mrow>\\n <mi>ln</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\mathrm{ln}({\\\\rm{\\\\Delta }})$</annotation>\\n </semantics></math> and likewise determine the asymptotics of the analogous constant for standard domination.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23070\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23070","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图 G$G$ 中的总支配集是 G$G$ 的顶点集合,使得每个顶点都与该集合的一个顶点相邻。总支配数 γt(G)${\gamma }_{t}(G)$ 是 G$G$ 中总支配集的最小心数。本文将研究 Yeo 提出的如下开放问题。对于每个 Δ≥3$\{rm{\Delta }}ge 3$,求最小值 rΔ${r}_{{rm{/Delta}}$,使得每个阶数至少为 3 的连通图 G$G$,阶数为 n$n$,大小为 m$m$、总支配数 γt${\gamma }_{t}$,以及有界最大度 Δ${rm\{Delta }}$, 满足 m≤12(Δ+rΔ)(n-γt)$m\le \frac{1}{2}({\rm\{Delta }}+{r}_{\{rm\{Delta }}})(n-{\gamma }_{t})$.Henning 证明了 rΔ≤Δ${r}_{{rm\{Delta }}}le {\rm{\Delta }}$ for all Δ≥3$\{rm\{Delta }}\ge 3$。Yeo 大幅改进了这一结果,并证明 0.1ln(Δ)<rΔ≤2Δ$0.1mathrm{ln}({\rm{Delta }})lt {r}_{{{rm\{Delta }}}le 2\sqrt{{{rm{Delta }}}$ for all Δ≥3${\rm{Delta }}\ge 3$、并提出了一个开放性问题,以确定 "rΔ${r}_{{rm\{Delta }}$ 是否与 ln(Δ)$\mathrm{ln}({\rm{\Delta }})$ 或 Δ$sqrt{{rm\{Delta }}$ 或某个完全不同的函数成比例增长。"在本文中,我们确定了 rΔ${r}_{{rm\{Delta }}$ 的增长,并证明 rΔ${r}_{{{rm\{Delta }}$ 是渐近的 ln(Δ)$\mathrm{ln}({\rm\{Delta }})$ ,同样也确定了标准支配的类似常数的渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal linear-Vizing relationships for (total) domination in graphs

A total dominating set in a graph G $G$ is a set of vertices of G $G$ such that every vertex is adjacent to a vertex of the set. The total domination number γ t ( G ) ${\gamma }_{t}(G)$ is the minimum cardinality of a total dominating set in G $G$ . In this paper, we study the following open problem posed by Yeo. For each Δ 3 ${\rm{\Delta }}\ge 3$ , find the smallest value, r Δ ${r}_{{\rm{\Delta }}}$ , such that every connected graph G $G$ of order at least 3, of order n $n$ , size m $m$ , total domination number γ t ${\gamma }_{t}$ , and bounded maximum degree Δ ${\rm{\Delta }}$ , satisfies m 1 2 ( Δ + r Δ ) ( n γ t ) $m\le \frac{1}{2}({\rm{\Delta }}+{r}_{{\rm{\Delta }}})(n-{\gamma }_{t})$ . Henning showed that r Δ Δ ${r}_{{\rm{\Delta }}}\le {\rm{\Delta }}$ for all Δ 3 ${\rm{\Delta }}\ge 3$ . Yeo significantly improved this result and showed that 0.1 ln ( Δ ) < r Δ 2 Δ $0.1\mathrm{ln}({\rm{\Delta }})\lt {r}_{{\rm{\Delta }}}\le 2\sqrt{{\rm{\Delta }}}$ for all Δ 3 ${\rm{\Delta }}\ge 3$ , and posed as an open problem to determine “whether r Δ ${r}_{{\rm{\Delta }}}$ grows proportionally with ln ( Δ ) $\mathrm{ln}({\rm{\Delta }})$ or Δ $\sqrt{{\rm{\Delta }}}$ or some completely different function.” In this paper, we determine the growth of r Δ ${r}_{{\rm{\Delta }}}$ , and show that r Δ ${r}_{{\rm{\Delta }}}$ is asymptotically ln ( Δ ) $\mathrm{ln}({\rm{\Delta }})$ and likewise determine the asymptotics of the analogous constant for standard domination.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信