Michael A. Henning, Paul Horn
求助PDF
{"title":"图中(完全)支配的最佳线性-Vizing 关系","authors":"Michael A. Henning, Paul Horn","doi":"10.1002/jgt.23070","DOIUrl":null,"url":null,"abstract":"<p>A total dominating set in a graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a set of vertices of <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> such that every vertex is adjacent to a vertex of the set. The total domination number <math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>t</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\gamma }_{t}(G)$</annotation>\n </semantics></math> is the minimum cardinality of a total dominating set in <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. In this paper, we study the following open problem posed by Yeo. For each <math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}\\ge 3$</annotation>\n </semantics></math>, find the smallest value, <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n </mrow>\n <annotation> ${r}_{{\\rm{\\Delta }}}$</annotation>\n </semantics></math>, such that every connected graph <math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> of order at least 3, of order <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, size <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n </mrow>\n <annotation> $m$</annotation>\n </semantics></math>, total domination number <math>\n <semantics>\n <mrow>\n <msub>\n <mi>γ</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n <annotation> ${\\gamma }_{t}$</annotation>\n </semantics></math>, and bounded maximum degree <math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n </mrow>\n <annotation> ${\\rm{\\Delta }}$</annotation>\n </semantics></math>, satisfies <math>\n <semantics>\n <mrow>\n <mi>m</mi>\n \n <mo>≤</mo>\n \n <mfrac>\n <mn>1</mn>\n \n <mn>2</mn>\n </mfrac>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>Δ</mi>\n \n <mo>+</mo>\n \n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <msub>\n <mi>γ</mi>\n \n <mi>t</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $m\\le \\frac{1}{2}({\\rm{\\Delta }}+{r}_{{\\rm{\\Delta }}})(n-{\\gamma }_{t})$</annotation>\n </semantics></math>. Henning showed that <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mi>Δ</mi>\n </mrow>\n <annotation> ${r}_{{\\rm{\\Delta }}}\\le {\\rm{\\Delta }}$</annotation>\n </semantics></math> for all <math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}\\ge 3$</annotation>\n </semantics></math>. Yeo significantly improved this result and showed that <math>\n <semantics>\n <mrow>\n <mn>0.1</mn>\n \n <mi>ln</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo><</mo>\n \n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <msqrt>\n <mi>Δ</mi>\n </msqrt>\n </mrow>\n <annotation> $0.1\\mathrm{ln}({\\rm{\\Delta }})\\lt {r}_{{\\rm{\\Delta }}}\\le 2\\sqrt{{\\rm{\\Delta }}}$</annotation>\n </semantics></math> for all <math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}\\ge 3$</annotation>\n </semantics></math>, and posed as an open problem to determine “whether <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n </mrow>\n <annotation> ${r}_{{\\rm{\\Delta }}}$</annotation>\n </semantics></math> grows proportionally with <math>\n <semantics>\n <mrow>\n <mi>ln</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\mathrm{ln}({\\rm{\\Delta }})$</annotation>\n </semantics></math> or <math>\n <semantics>\n <mrow>\n <msqrt>\n <mi>Δ</mi>\n </msqrt>\n </mrow>\n <annotation> $\\sqrt{{\\rm{\\Delta }}}$</annotation>\n </semantics></math> or some completely different function.” In this paper, we determine the growth of <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n </mrow>\n <annotation> ${r}_{{\\rm{\\Delta }}}$</annotation>\n </semantics></math>, and show that <math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n \n <mi>Δ</mi>\n </msub>\n </mrow>\n <annotation> ${r}_{{\\rm{\\Delta }}}$</annotation>\n </semantics></math> is asymptotically <math>\n <semantics>\n <mrow>\n <mi>ln</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\mathrm{ln}({\\rm{\\Delta }})$</annotation>\n </semantics></math> and likewise determine the asymptotics of the analogous constant for standard domination.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal linear-Vizing relationships for (total) domination in graphs\",\"authors\":\"Michael A. Henning, Paul Horn\",\"doi\":\"10.1002/jgt.23070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A total dominating set in a graph <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is a set of vertices of <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> such that every vertex is adjacent to a vertex of the set. The total domination number <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>γ</mi>\\n \\n <mi>t</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\gamma }_{t}(G)$</annotation>\\n </semantics></math> is the minimum cardinality of a total dominating set in <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. In this paper, we study the following open problem posed by Yeo. For each <math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}\\\\ge 3$</annotation>\\n </semantics></math>, find the smallest value, <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mi>Δ</mi>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{{\\\\rm{\\\\Delta }}}$</annotation>\\n </semantics></math>, such that every connected graph <math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> of order at least 3, of order <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>, size <math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n <annotation> $m$</annotation>\\n </semantics></math>, total domination number <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>γ</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\gamma }_{t}$</annotation>\\n </semantics></math>, and bounded maximum degree <math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}$</annotation>\\n </semantics></math>, satisfies <math>\\n <semantics>\\n <mrow>\\n <mi>m</mi>\\n \\n <mo>≤</mo>\\n \\n <mfrac>\\n <mn>1</mn>\\n \\n <mn>2</mn>\\n </mfrac>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>Δ</mi>\\n \\n <mo>+</mo>\\n \\n <msub>\\n <mi>r</mi>\\n \\n <mi>Δ</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mi>n</mi>\\n \\n <mo>−</mo>\\n \\n <msub>\\n <mi>γ</mi>\\n \\n <mi>t</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $m\\\\le \\\\frac{1}{2}({\\\\rm{\\\\Delta }}+{r}_{{\\\\rm{\\\\Delta }}})(n-{\\\\gamma }_{t})$</annotation>\\n </semantics></math>. Henning showed that <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mi>Δ</mi>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <mi>Δ</mi>\\n </mrow>\\n <annotation> ${r}_{{\\\\rm{\\\\Delta }}}\\\\le {\\\\rm{\\\\Delta }}$</annotation>\\n </semantics></math> for all <math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}\\\\ge 3$</annotation>\\n </semantics></math>. Yeo significantly improved this result and showed that <math>\\n <semantics>\\n <mrow>\\n <mn>0.1</mn>\\n \\n <mi>ln</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo><</mo>\\n \\n <msub>\\n <mi>r</mi>\\n \\n <mi>Δ</mi>\\n </msub>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n \\n <msqrt>\\n <mi>Δ</mi>\\n </msqrt>\\n </mrow>\\n <annotation> $0.1\\\\mathrm{ln}({\\\\rm{\\\\Delta }})\\\\lt {r}_{{\\\\rm{\\\\Delta }}}\\\\le 2\\\\sqrt{{\\\\rm{\\\\Delta }}}$</annotation>\\n </semantics></math> for all <math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}\\\\ge 3$</annotation>\\n </semantics></math>, and posed as an open problem to determine “whether <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mi>Δ</mi>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{{\\\\rm{\\\\Delta }}}$</annotation>\\n </semantics></math> grows proportionally with <math>\\n <semantics>\\n <mrow>\\n <mi>ln</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\mathrm{ln}({\\\\rm{\\\\Delta }})$</annotation>\\n </semantics></math> or <math>\\n <semantics>\\n <mrow>\\n <msqrt>\\n <mi>Δ</mi>\\n </msqrt>\\n </mrow>\\n <annotation> $\\\\sqrt{{\\\\rm{\\\\Delta }}}$</annotation>\\n </semantics></math> or some completely different function.” In this paper, we determine the growth of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mi>Δ</mi>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{{\\\\rm{\\\\Delta }}}$</annotation>\\n </semantics></math>, and show that <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n \\n <mi>Δ</mi>\\n </msub>\\n </mrow>\\n <annotation> ${r}_{{\\\\rm{\\\\Delta }}}$</annotation>\\n </semantics></math> is asymptotically <math>\\n <semantics>\\n <mrow>\\n <mi>ln</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\mathrm{ln}({\\\\rm{\\\\Delta }})$</annotation>\\n </semantics></math> and likewise determine the asymptotics of the analogous constant for standard domination.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用