纳米粘土粉末和固化时间对 G 级水泥性能的综合影响

IF 1.2 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Geofluids Pub Date : 2023-12-21 DOI:10.1155/2023/7316335
Abdulmalek Ahmed, Ahmed Abdulhamid Mahmoud, Salaheldin Elkatatny
{"title":"纳米粘土粉末和固化时间对 G 级水泥性能的综合影响","authors":"Abdulmalek Ahmed, Ahmed Abdulhamid Mahmoud, Salaheldin Elkatatny","doi":"10.1155/2023/7316335","DOIUrl":null,"url":null,"abstract":"When the cement paste is subjected to stresses, the cement matrix and its characteristics are dramatically influenced, especially in the early ages of cement hydration when the cement properties have not yet settled. Nanoclay, which is made up of very small particles, was used to improve the properties of cement. In this study, the early-age performance of cement made with nanoclay powder for use in oil wells is assessed. Ten cement samples were made and cured at varying times (6, 12, 24, 48, and 72 hours), wherein 1% by weight of cement of nanoclay was used in five samples, and in the other five samples, there was no nanoclay present in the cement. Failure properties, petrophysical parameters, and elastic properties were studied for all the cement samples. Nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were all used to describe the cement samples and determine how different curing times affected the cement’s mineralogical and microstructural features. The results displayed that compressive and tensile strengths were shown to increase with curing time for both the base (control) and nanoclay cement samples; however, the compressive and tensile strengths of the nanoclay cement samples were found to be greater than the base sample by 20.2% and 17.9%, respectively. This is due to the presence of more calcium silicate hydrate in these samples. Nanoclay cement had 76.9% lower permeability than control cement, which can be related to the capacity of the nanoclay particles to fill the microstructure dominating the base samples as curing time increased. Young’s modulus of the cement was lowered by 1.8%, while Poisson’s ratio was increased by 2.7% when nanoclay was incorporated. Nanoclay cement has a 29.2% smaller porosity than regular cement, and this porosity increases as the cement cures. The novelty of this work is that several properties of the class G cement were evaluated at the early stage of hydration, where the nanoclay particles were used to improve these properties.","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"35 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Combined Effect of Nanoclay Powder and Curing Time on the Properties of Class G Cement\",\"authors\":\"Abdulmalek Ahmed, Ahmed Abdulhamid Mahmoud, Salaheldin Elkatatny\",\"doi\":\"10.1155/2023/7316335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When the cement paste is subjected to stresses, the cement matrix and its characteristics are dramatically influenced, especially in the early ages of cement hydration when the cement properties have not yet settled. Nanoclay, which is made up of very small particles, was used to improve the properties of cement. In this study, the early-age performance of cement made with nanoclay powder for use in oil wells is assessed. Ten cement samples were made and cured at varying times (6, 12, 24, 48, and 72 hours), wherein 1% by weight of cement of nanoclay was used in five samples, and in the other five samples, there was no nanoclay present in the cement. Failure properties, petrophysical parameters, and elastic properties were studied for all the cement samples. Nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were all used to describe the cement samples and determine how different curing times affected the cement’s mineralogical and microstructural features. The results displayed that compressive and tensile strengths were shown to increase with curing time for both the base (control) and nanoclay cement samples; however, the compressive and tensile strengths of the nanoclay cement samples were found to be greater than the base sample by 20.2% and 17.9%, respectively. This is due to the presence of more calcium silicate hydrate in these samples. Nanoclay cement had 76.9% lower permeability than control cement, which can be related to the capacity of the nanoclay particles to fill the microstructure dominating the base samples as curing time increased. Young’s modulus of the cement was lowered by 1.8%, while Poisson’s ratio was increased by 2.7% when nanoclay was incorporated. Nanoclay cement has a 29.2% smaller porosity than regular cement, and this porosity increases as the cement cures. The novelty of this work is that several properties of the class G cement were evaluated at the early stage of hydration, where the nanoclay particles were used to improve these properties.\",\"PeriodicalId\":12512,\"journal\":{\"name\":\"Geofluids\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofluids\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7316335\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofluids","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2023/7316335","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

当水泥浆受到应力作用时,水泥基质及其特性会受到极大影响,尤其是在水泥水化初期,水泥特性尚未稳定。由极小颗粒组成的纳米粘土被用来改善水泥的性能。本研究评估了用纳米粘土粉末制成的水泥在油井中使用的早期龄期性能。研究人员制作了 10 个水泥样品,并在不同时间(6、12、24、48 和 72 小时)进行固化,其中 5 个样品中使用了 1%(按水泥重量计)的纳米粘土,另外 5 个样品中的水泥不含纳米粘土。对所有水泥样品的破坏特性、岩石物理参数和弹性特性进行了研究。核磁共振(NMR)、X 射线衍射(XRD)和扫描电子显微镜(SEM)都被用来描述水泥样品,并确定不同的固化时间如何影响水泥的矿物学和微观结构特征。结果显示,基质(对照组)和纳米粘土水泥样品的抗压和抗拉强度都随着固化时间的延长而增加;然而,纳米粘土水泥样品的抗压和抗拉强度分别比基质样品高出 20.2% 和 17.9%。这是因为这些样品中含有更多的硅酸钙水合物。纳米粘土水泥的渗透率比对照水泥低 76.9%,这可能与随着固化时间的延长,纳米粘土颗粒有能力填充基样中占主导地位的微观结构有关。掺入纳米粘土后,水泥的杨氏模量降低了 1.8%,而泊松比提高了 2.7%。纳米粘土水泥的孔隙率比普通水泥小 29.2%,而且孔隙率会随着水泥的固化而增加。这项工作的新颖之处在于,在水化的早期阶段对 G 级水泥的几种性能进行了评估,并利用纳米粘土颗粒改善了这些性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Combined Effect of Nanoclay Powder and Curing Time on the Properties of Class G Cement
When the cement paste is subjected to stresses, the cement matrix and its characteristics are dramatically influenced, especially in the early ages of cement hydration when the cement properties have not yet settled. Nanoclay, which is made up of very small particles, was used to improve the properties of cement. In this study, the early-age performance of cement made with nanoclay powder for use in oil wells is assessed. Ten cement samples were made and cured at varying times (6, 12, 24, 48, and 72 hours), wherein 1% by weight of cement of nanoclay was used in five samples, and in the other five samples, there was no nanoclay present in the cement. Failure properties, petrophysical parameters, and elastic properties were studied for all the cement samples. Nuclear magnetic resonance (NMR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were all used to describe the cement samples and determine how different curing times affected the cement’s mineralogical and microstructural features. The results displayed that compressive and tensile strengths were shown to increase with curing time for both the base (control) and nanoclay cement samples; however, the compressive and tensile strengths of the nanoclay cement samples were found to be greater than the base sample by 20.2% and 17.9%, respectively. This is due to the presence of more calcium silicate hydrate in these samples. Nanoclay cement had 76.9% lower permeability than control cement, which can be related to the capacity of the nanoclay particles to fill the microstructure dominating the base samples as curing time increased. Young’s modulus of the cement was lowered by 1.8%, while Poisson’s ratio was increased by 2.7% when nanoclay was incorporated. Nanoclay cement has a 29.2% smaller porosity than regular cement, and this porosity increases as the cement cures. The novelty of this work is that several properties of the class G cement were evaluated at the early stage of hydration, where the nanoclay particles were used to improve these properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geofluids
Geofluids 地学-地球化学与地球物理
CiteScore
2.80
自引率
17.60%
发文量
835
期刊介绍: Geofluids is a peer-reviewed, Open Access journal that provides a forum for original research and reviews relating to the role of fluids in mineralogical, chemical, and structural evolution of the Earth’s crust. Its explicit aim is to disseminate ideas across the range of sub-disciplines in which Geofluids research is carried out. To this end, authors are encouraged to stress the transdisciplinary relevance and international ramifications of their research. Authors are also encouraged to make their work as accessible as possible to readers from other sub-disciplines. Geofluids emphasizes chemical, microbial, and physical aspects of subsurface fluids throughout the Earth’s crust. Geofluids spans studies of groundwater, terrestrial or submarine geothermal fluids, basinal brines, petroleum, metamorphic waters or magmatic fluids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信