Macie M. Chess, William Douglas, Josiah Saunders, Charles A. Ettensohn
{"title":"棘皮动物中粘连蛋白超家族成员的全基因组鉴定和时空表达分析","authors":"Macie M. Chess, William Douglas, Josiah Saunders, Charles A. Ettensohn","doi":"10.1186/s13227-023-00219-7","DOIUrl":null,"url":null,"abstract":"Cadherins are calcium-dependent transmembrane cell–cell adhesion proteins that are essential for metazoan development. They consist of three subfamilies: classical cadherins, which bind catenin, protocadherins, which contain 6–7 calcium-binding repeat domains, and atypical cadherins. Their functions include forming adherens junctions, establishing planar cell polarity (PCP), and regulating cell shape, proliferation, and migration. Because they are basal deuterostomes, echinoderms provide important insights into bilaterian evolution, but their only well-characterized cadherin is G-cadherin, a classical cadherin that is expressed by many embryonic epithelia. We aimed to better characterize echinoderm cadherins by conducting phylogenetic analyses and examining the spatiotemporal expression patterns of cadherin-encoding genes during Strongylocentrotus purpuratus development. Our phylogenetic analyses conducted on two echinoid, three asteroid, and one crinoid species identified ten echinoderm cadherins, including one deuterostome-specific ortholog, cadherin-23, and an echinoderm-specific atypical cadherin that possibly arose in an echinoid-asteroid ancestor. Catenin-binding domains in dachsous-2 orthologs were found to be a deuterostome-specific innovation that was selectively lost in mouse, while those in Fat4 orthologs appeared to be Ambulacraria-specific and were selectively lost in non-crinoid echinoderms. The identified suite of echinoderm cadherins lacks vertebrate-specific innovations but contains two proteins that are present in protostomes and absent from mouse. The spatiotemporal expression patterns of four embryonically expressed cadherins (fat atypical cadherins 1 and 4, dachsous-2, and protocadherin-9) were dynamic and mirrored the expression pattern of Frizzled 5/8, a non-canonical Wnt PCP pathway receptor protein essential for archenteron morphogenesis. The echinoderm cadherin toolkit is more similar to that of an ancient bilaterian predating protostomes and deuterostomes than it is to the suite of cadherins found in extant vertebrates. However, it also appears that deuterostomes underwent several cadherin-related innovations. Based on their similar spatiotemporal expression patterns and orthologous relationships to PCP-related and tumor-suppressing proteins, we hypothesize that sea urchin cadherins may play a role in regulating the shape and growth of embryonic epithelia and organs. Future experiments will examine cadherin expression in non-echinoid echinoderms and explore the functions of cadherins during echinoderm development.","PeriodicalId":49076,"journal":{"name":"Evodevo","volume":"1 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide identification and spatiotemporal expression analysis of cadherin superfamily members in echinoderms\",\"authors\":\"Macie M. Chess, William Douglas, Josiah Saunders, Charles A. Ettensohn\",\"doi\":\"10.1186/s13227-023-00219-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cadherins are calcium-dependent transmembrane cell–cell adhesion proteins that are essential for metazoan development. They consist of three subfamilies: classical cadherins, which bind catenin, protocadherins, which contain 6–7 calcium-binding repeat domains, and atypical cadherins. Their functions include forming adherens junctions, establishing planar cell polarity (PCP), and regulating cell shape, proliferation, and migration. Because they are basal deuterostomes, echinoderms provide important insights into bilaterian evolution, but their only well-characterized cadherin is G-cadherin, a classical cadherin that is expressed by many embryonic epithelia. We aimed to better characterize echinoderm cadherins by conducting phylogenetic analyses and examining the spatiotemporal expression patterns of cadherin-encoding genes during Strongylocentrotus purpuratus development. Our phylogenetic analyses conducted on two echinoid, three asteroid, and one crinoid species identified ten echinoderm cadherins, including one deuterostome-specific ortholog, cadherin-23, and an echinoderm-specific atypical cadherin that possibly arose in an echinoid-asteroid ancestor. Catenin-binding domains in dachsous-2 orthologs were found to be a deuterostome-specific innovation that was selectively lost in mouse, while those in Fat4 orthologs appeared to be Ambulacraria-specific and were selectively lost in non-crinoid echinoderms. The identified suite of echinoderm cadherins lacks vertebrate-specific innovations but contains two proteins that are present in protostomes and absent from mouse. The spatiotemporal expression patterns of four embryonically expressed cadherins (fat atypical cadherins 1 and 4, dachsous-2, and protocadherin-9) were dynamic and mirrored the expression pattern of Frizzled 5/8, a non-canonical Wnt PCP pathway receptor protein essential for archenteron morphogenesis. The echinoderm cadherin toolkit is more similar to that of an ancient bilaterian predating protostomes and deuterostomes than it is to the suite of cadherins found in extant vertebrates. However, it also appears that deuterostomes underwent several cadherin-related innovations. Based on their similar spatiotemporal expression patterns and orthologous relationships to PCP-related and tumor-suppressing proteins, we hypothesize that sea urchin cadherins may play a role in regulating the shape and growth of embryonic epithelia and organs. Future experiments will examine cadherin expression in non-echinoid echinoderms and explore the functions of cadherins during echinoderm development.\",\"PeriodicalId\":49076,\"journal\":{\"name\":\"Evodevo\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evodevo\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13227-023-00219-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evodevo","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13227-023-00219-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Genome-wide identification and spatiotemporal expression analysis of cadherin superfamily members in echinoderms
Cadherins are calcium-dependent transmembrane cell–cell adhesion proteins that are essential for metazoan development. They consist of three subfamilies: classical cadherins, which bind catenin, protocadherins, which contain 6–7 calcium-binding repeat domains, and atypical cadherins. Their functions include forming adherens junctions, establishing planar cell polarity (PCP), and regulating cell shape, proliferation, and migration. Because they are basal deuterostomes, echinoderms provide important insights into bilaterian evolution, but their only well-characterized cadherin is G-cadherin, a classical cadherin that is expressed by many embryonic epithelia. We aimed to better characterize echinoderm cadherins by conducting phylogenetic analyses and examining the spatiotemporal expression patterns of cadherin-encoding genes during Strongylocentrotus purpuratus development. Our phylogenetic analyses conducted on two echinoid, three asteroid, and one crinoid species identified ten echinoderm cadherins, including one deuterostome-specific ortholog, cadherin-23, and an echinoderm-specific atypical cadherin that possibly arose in an echinoid-asteroid ancestor. Catenin-binding domains in dachsous-2 orthologs were found to be a deuterostome-specific innovation that was selectively lost in mouse, while those in Fat4 orthologs appeared to be Ambulacraria-specific and were selectively lost in non-crinoid echinoderms. The identified suite of echinoderm cadherins lacks vertebrate-specific innovations but contains two proteins that are present in protostomes and absent from mouse. The spatiotemporal expression patterns of four embryonically expressed cadherins (fat atypical cadherins 1 and 4, dachsous-2, and protocadherin-9) were dynamic and mirrored the expression pattern of Frizzled 5/8, a non-canonical Wnt PCP pathway receptor protein essential for archenteron morphogenesis. The echinoderm cadherin toolkit is more similar to that of an ancient bilaterian predating protostomes and deuterostomes than it is to the suite of cadherins found in extant vertebrates. However, it also appears that deuterostomes underwent several cadherin-related innovations. Based on their similar spatiotemporal expression patterns and orthologous relationships to PCP-related and tumor-suppressing proteins, we hypothesize that sea urchin cadherins may play a role in regulating the shape and growth of embryonic epithelia and organs. Future experiments will examine cadherin expression in non-echinoid echinoderms and explore the functions of cadherins during echinoderm development.
期刊介绍:
EvoDevo publishes articles on a broad range of topics associated with the translation of genotype to phenotype in a phylogenetic context. Understanding the history of life, the evolution of novelty and the generation of form, whether through embryogenesis, budding, or regeneration are amongst the greatest challenges in biology. We support the understanding of these processes through the many complementary approaches that characterize the field of evo-devo.
The focus of the journal is on research that promotes understanding of the pattern and process of morphological evolution.
All articles that fulfill this aim will be welcome, in particular: evolution of pattern; formation comparative gene function/expression; life history evolution; homology and character evolution; comparative genomics; phylogenetics and palaeontology