与胰腺癌副炎症免疫微环境相关的新型热蛋白沉积预后模型

IF 3.5 3区 医学 Q2 IMMUNOLOGY
Kong-kong Wei, Zhi-xing Du, Jun-ge Deng, Jin-wei Yang, Hao Chen
{"title":"与胰腺癌副炎症免疫微环境相关的新型热蛋白沉积预后模型","authors":"Kong-kong Wei, Zhi-xing Du, Jun-ge Deng, Jin-wei Yang, Hao Chen","doi":"10.1155/2023/8776892","DOIUrl":null,"url":null,"abstract":"<i>Background</i>. Pyroptosis has a dual function in malignant tumor progression and management. The action of pyroptosis-related genes (PRGs) in pancreatic cancer (PC), however, remains uncertain. <i>Methods</i>. Differential expression analyses of 57 PRGs were conducted in the TCGA TARGET GTEx dataset. The candidate genes were determined using LASSO Cox regression and random forest analyses. A risk model was developed with the TCGA dataset and validated with the ICGC dataset. <i>Results</i>. Three prognosis-related PRGs (BAK1, GSDMC, and IL18) were chosen to create a risk model. High-risk patients from the TCGA and ICGC cohorts had an unfavorable overall survival (all <span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 18.973 11.7782\" width=\"18.973pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.342,0)\"></path></g></svg><span></span><span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"22.555183800000002 -8.34882 21.921 11.7782\" width=\"21.921pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.605,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,28.845,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,31.809,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.049,0)\"></path></g></svg>).</span></span> The risk modelʼs accuracy and independent predictability were assessed by receiver operating characteristic curves and multivariate Cox regression analysis, respectively. High-risk patients possessed different molecular pathways, higher KRAS and TP53 mutations, increased expression of PD-L1, C1 immune subtype, and immunosuppressive microenvironment characterized by parainflammation compared to low-risk patients. KRAS and TP53 mutations participated in different inflammatory pathways and played different prognostic roles between the two risk groups. KRAS mutations in high-risk patients caused a more unfavorable prognosis than wild-type KRAS (<span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 18.973 11.7782\" width=\"18.973pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.342,0)\"></path></g></svg><span></span><span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"22.555183800000002 -8.34882 28.184 11.7782\" width=\"28.184pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.605,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,28.845,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,31.809,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.049,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,44.289,0)\"></path></g></svg>),</span></span> whereas TP53 mutations in low-risk patients exhibited a poorer outcome than wild-type TP53 (<span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 18.973 11.7782\" width=\"18.973pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.342,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"22.555183800000002 -8.34882 28.184 11.7782\" width=\"28.184pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.605,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,28.845,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,31.809,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.049,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,44.289,0)\"></path></g></svg>).</span></span> Spearman correlation analyses revealed that the parainflammatory response in PC might be implicated in GSDMC-mediated pyroptosis via cytosolic DNA-sensing pathways under hypoxic conditions. Furthermore, the risk scores were significantly and positively related to the expression of HNRNPC, RBM15, YTHDF1, and YTHDF2, as well as sensitivity to gemcitabine, cisplatin, and erlotinib. <i>Conclusions</i>. This study created a novel pyroptosis-based risk model related to the parainflammatory immune microenvironment, which might help identify novel biomarkers, evaluate the tumor immune microenvironment, and develop management strategies for PC patients.","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"85 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Pyroptosis-Based Prognostic Model Correlated with the Parainflammatory Immune Microenvironment of Pancreatic Cancer\",\"authors\":\"Kong-kong Wei, Zhi-xing Du, Jun-ge Deng, Jin-wei Yang, Hao Chen\",\"doi\":\"10.1155/2023/8776892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<i>Background</i>. Pyroptosis has a dual function in malignant tumor progression and management. The action of pyroptosis-related genes (PRGs) in pancreatic cancer (PC), however, remains uncertain. <i>Methods</i>. Differential expression analyses of 57 PRGs were conducted in the TCGA TARGET GTEx dataset. The candidate genes were determined using LASSO Cox regression and random forest analyses. A risk model was developed with the TCGA dataset and validated with the ICGC dataset. <i>Results</i>. Three prognosis-related PRGs (BAK1, GSDMC, and IL18) were chosen to create a risk model. High-risk patients from the TCGA and ICGC cohorts had an unfavorable overall survival (all <span><svg height=\\\"11.7782pt\\\" style=\\\"vertical-align:-3.42938pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.34882 18.973 11.7782\\\" width=\\\"18.973pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,11.342,0)\\\"></path></g></svg><span></span><span><svg height=\\\"11.7782pt\\\" style=\\\"vertical-align:-3.42938pt\\\" version=\\\"1.1\\\" viewbox=\\\"22.555183800000002 -8.34882 21.921 11.7782\\\" width=\\\"21.921pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,22.605,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,28.845,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,31.809,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,38.049,0)\\\"></path></g></svg>).</span></span> The risk modelʼs accuracy and independent predictability were assessed by receiver operating characteristic curves and multivariate Cox regression analysis, respectively. High-risk patients possessed different molecular pathways, higher KRAS and TP53 mutations, increased expression of PD-L1, C1 immune subtype, and immunosuppressive microenvironment characterized by parainflammation compared to low-risk patients. KRAS and TP53 mutations participated in different inflammatory pathways and played different prognostic roles between the two risk groups. KRAS mutations in high-risk patients caused a more unfavorable prognosis than wild-type KRAS (<span><svg height=\\\"11.7782pt\\\" style=\\\"vertical-align:-3.42938pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.34882 18.973 11.7782\\\" width=\\\"18.973pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-113\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.342,0)\\\"></path></g></svg><span></span><span><svg height=\\\"11.7782pt\\\" style=\\\"vertical-align:-3.42938pt\\\" version=\\\"1.1\\\" viewbox=\\\"22.555183800000002 -8.34882 28.184 11.7782\\\" width=\\\"28.184pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,22.605,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,28.845,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,31.809,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,38.049,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,44.289,0)\\\"></path></g></svg>),</span></span> whereas TP53 mutations in low-risk patients exhibited a poorer outcome than wild-type TP53 (<span><svg height=\\\"11.7782pt\\\" style=\\\"vertical-align:-3.42938pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.34882 18.973 11.7782\\\" width=\\\"18.973pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-113\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.342,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><span><svg height=\\\"11.7782pt\\\" style=\\\"vertical-align:-3.42938pt\\\" version=\\\"1.1\\\" viewbox=\\\"22.555183800000002 -8.34882 28.184 11.7782\\\" width=\\\"28.184pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,22.605,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,28.845,0)\\\"><use xlink:href=\\\"#g113-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,31.809,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,38.049,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,44.289,0)\\\"></path></g></svg>).</span></span> Spearman correlation analyses revealed that the parainflammatory response in PC might be implicated in GSDMC-mediated pyroptosis via cytosolic DNA-sensing pathways under hypoxic conditions. Furthermore, the risk scores were significantly and positively related to the expression of HNRNPC, RBM15, YTHDF1, and YTHDF2, as well as sensitivity to gemcitabine, cisplatin, and erlotinib. <i>Conclusions</i>. This study created a novel pyroptosis-based risk model related to the parainflammatory immune microenvironment, which might help identify novel biomarkers, evaluate the tumor immune microenvironment, and develop management strategies for PC patients.\",\"PeriodicalId\":15952,\"journal\":{\"name\":\"Journal of Immunology Research\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Immunology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8776892\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Immunology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/8776892","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景。热蛋白沉积在恶性肿瘤的进展和管理中具有双重功能。然而,胰腺癌(PC)中的裂解酶相关基因(PRGs)的作用仍不确定。研究方法在 TCGA TARGET GTEx 数据集中对 57 个 PRGs 进行了差异表达分析。候选基因是通过 LASSO Cox 回归和随机森林分析确定的。利用 TCGA 数据集开发了一个风险模型,并利用 ICGC 数据集进行了验证。结果显示我们选择了三个与预后相关的 PRGs(BAK1、GSDMC 和 IL18)来建立风险模型。TCGA和ICGC队列中的高危患者总生存期(全部)均不乐观。接受者操作特征曲线和多变量考克斯回归分析分别评估了风险模型的准确性和独立预测能力。与低危患者相比,高危患者拥有不同的分子通路、更高的KRAS和TP53突变、更高的PD-L1表达、C1免疫亚型以及以副炎症为特征的免疫抑制微环境。KRAS和TP53突变参与了不同的炎症通路,在两个风险组之间起着不同的预后作用。高危患者的 KRAS 突变比野生型 KRAS 的预后更差(),而低危患者的 TP53 突变比野生型 TP53 的预后更差()。斯皮尔曼相关性分析表明,PC 中的副炎症反应可能与 GSDMC 在缺氧条件下通过细胞膜 DNA 传感途径介导的热凋亡有关。此外,风险评分与 HNRNPC、RBM15、YTHDF1 和 YTHDF2 的表达以及对吉西他滨、顺铂和厄洛替尼的敏感性呈显著正相关。结论这项研究建立了一个与副炎性免疫微环境相关的基于热变态反应的新型风险模型,它可能有助于识别新型生物标记物、评估肿瘤免疫微环境以及制定PC患者的管理策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Pyroptosis-Based Prognostic Model Correlated with the Parainflammatory Immune Microenvironment of Pancreatic Cancer
Background. Pyroptosis has a dual function in malignant tumor progression and management. The action of pyroptosis-related genes (PRGs) in pancreatic cancer (PC), however, remains uncertain. Methods. Differential expression analyses of 57 PRGs were conducted in the TCGA TARGET GTEx dataset. The candidate genes were determined using LASSO Cox regression and random forest analyses. A risk model was developed with the TCGA dataset and validated with the ICGC dataset. Results. Three prognosis-related PRGs (BAK1, GSDMC, and IL18) were chosen to create a risk model. High-risk patients from the TCGA and ICGC cohorts had an unfavorable overall survival (all ). The risk modelʼs accuracy and independent predictability were assessed by receiver operating characteristic curves and multivariate Cox regression analysis, respectively. High-risk patients possessed different molecular pathways, higher KRAS and TP53 mutations, increased expression of PD-L1, C1 immune subtype, and immunosuppressive microenvironment characterized by parainflammation compared to low-risk patients. KRAS and TP53 mutations participated in different inflammatory pathways and played different prognostic roles between the two risk groups. KRAS mutations in high-risk patients caused a more unfavorable prognosis than wild-type KRAS (), whereas TP53 mutations in low-risk patients exhibited a poorer outcome than wild-type TP53 (). Spearman correlation analyses revealed that the parainflammatory response in PC might be implicated in GSDMC-mediated pyroptosis via cytosolic DNA-sensing pathways under hypoxic conditions. Furthermore, the risk scores were significantly and positively related to the expression of HNRNPC, RBM15, YTHDF1, and YTHDF2, as well as sensitivity to gemcitabine, cisplatin, and erlotinib. Conclusions. This study created a novel pyroptosis-based risk model related to the parainflammatory immune microenvironment, which might help identify novel biomarkers, evaluate the tumor immune microenvironment, and develop management strategies for PC patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
2.40%
发文量
423
审稿时长
15 weeks
期刊介绍: Journal of Immunology Research is a peer-reviewed, Open Access journal that provides a platform for scientists and clinicians working in different areas of immunology and therapy. The journal publishes research articles, review articles, as well as clinical studies related to classical immunology, molecular immunology, clinical immunology, cancer immunology, transplantation immunology, immune pathology, immunodeficiency, autoimmune diseases, immune disorders, and immunotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信