塞雷莎类:热带、拓扑和代数

IF 1.1 2区 数学 Q1 MATHEMATICS
Daniel Corey, Jordan Ellenberg, Wanlin Li
{"title":"塞雷莎类:热带、拓扑和代数","authors":"Daniel Corey, Jordan Ellenberg, Wanlin Li","doi":"10.1017/s1474748023000506","DOIUrl":null,"url":null,"abstract":"<p>The <span>Ceresa cycle</span> is an algebraic cycle attached to a smooth algebraic curve with a marked point, which is trivial when the curve is hyperelliptic with a marked Weierstrass point. The image of the Ceresa cycle under a certain cycle class map provides a class in étale cohomology called the <span>Ceresa class</span>. Describing the Ceresa class explicitly for nonhyperelliptic curves is in general not easy. We present a ‘combinatorialization’ of this problem, explaining how to define a Ceresa class for a tropical algebraic curve and also for a topological surface endowed with a multiset of commuting Dehn twists (where it is related to the Morita cocycle on the mapping class group). We explain how these are related to the Ceresa class of a smooth algebraic curve over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220151957867-0477:S1474748023000506:S1474748023000506_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {C}(\\!(t)\\!)$</span></span></img></span></span> and show that the Ceresa class in each of these settings is torsion.</p>","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":"32 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE CERESA CLASS: TROPICAL, TOPOLOGICAL AND ALGEBRAIC\",\"authors\":\"Daniel Corey, Jordan Ellenberg, Wanlin Li\",\"doi\":\"10.1017/s1474748023000506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The <span>Ceresa cycle</span> is an algebraic cycle attached to a smooth algebraic curve with a marked point, which is trivial when the curve is hyperelliptic with a marked Weierstrass point. The image of the Ceresa cycle under a certain cycle class map provides a class in étale cohomology called the <span>Ceresa class</span>. Describing the Ceresa class explicitly for nonhyperelliptic curves is in general not easy. We present a ‘combinatorialization’ of this problem, explaining how to define a Ceresa class for a tropical algebraic curve and also for a topological surface endowed with a multiset of commuting Dehn twists (where it is related to the Morita cocycle on the mapping class group). We explain how these are related to the Ceresa class of a smooth algebraic curve over <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231220151957867-0477:S1474748023000506:S1474748023000506_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {C}(\\\\!(t)\\\\!)$</span></span></img></span></span> and show that the Ceresa class in each of these settings is torsion.</p>\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748023000506\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748023000506","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Ceresa 循环是附加在有标记点的光滑代数曲线上的代数循环,当曲线是有标记 Weierstrass 点的超椭圆曲线时,Ceresa 循环是微不足道的。Ceresa 循环在某个循环类映射下的图像提供了一个在 étale cohomology 中称为 Ceresa 类的类。要明确描述非全椭圆曲线的 Ceresa 类一般并不容易。我们提出了这一问题的 "组合化",解释了如何为热带代数曲线定义 Ceresa 类,以及如何为禀赋了多集换向 Dehn 扭曲的拓扑曲面定义 Ceresa 类(Ceresa 类与映射类群上的 Morita 循环相关)。我们解释了这些与在 $\mathbb {C}(\!(t)\!)$ 上的光滑代数曲线的 Ceresa 类之间的关系,并证明了这些情况下的 Ceresa 类都是扭转的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE CERESA CLASS: TROPICAL, TOPOLOGICAL AND ALGEBRAIC

The Ceresa cycle is an algebraic cycle attached to a smooth algebraic curve with a marked point, which is trivial when the curve is hyperelliptic with a marked Weierstrass point. The image of the Ceresa cycle under a certain cycle class map provides a class in étale cohomology called the Ceresa class. Describing the Ceresa class explicitly for nonhyperelliptic curves is in general not easy. We present a ‘combinatorialization’ of this problem, explaining how to define a Ceresa class for a tropical algebraic curve and also for a topological surface endowed with a multiset of commuting Dehn twists (where it is related to the Morita cocycle on the mapping class group). We explain how these are related to the Ceresa class of a smooth algebraic curve over $\mathbb {C}(\!(t)\!)$ and show that the Ceresa class in each of these settings is torsion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信