反不变子空间枚举和 q-Hermite Catalan 矩阵条目的 Touchard 公式

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Amritanshu Prasad , Samrith Ram
{"title":"反不变子空间枚举和 q-Hermite Catalan 矩阵条目的 Touchard 公式","authors":"Amritanshu Prasad ,&nbsp;Samrith Ram","doi":"10.1016/j.aam.2023.102654","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>We express the number of anti-invariant subspaces for a linear operator on a finite vector space in terms of the number of its invariant subspaces. When the operator is diagonalizable with </span>distinct eigenvalues, our formula gives a finite-field interpretation for the entries of the </span><em>q</em>-Hermite Catalan matrix. We also obtain an interesting new proof of Touchard's formula for these entries.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enumeration of anti-invariant subspaces and Touchard's formula for the entries of the q-Hermite Catalan matrix\",\"authors\":\"Amritanshu Prasad ,&nbsp;Samrith Ram\",\"doi\":\"10.1016/j.aam.2023.102654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>We express the number of anti-invariant subspaces for a linear operator on a finite vector space in terms of the number of its invariant subspaces. When the operator is diagonalizable with </span>distinct eigenvalues, our formula gives a finite-field interpretation for the entries of the </span><em>q</em>-Hermite Catalan matrix. We also obtain an interesting new proof of Touchard's formula for these entries.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885823001720\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885823001720","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们用有限向量空间上线性算子的不变子空间数来表示其反不变子空间数。当算子可对角化且具有不同特征值时,我们的公式给出了 q-Hermite Catalan 矩阵项的有限场解释。我们还为这些项获得了一个有趣的新证明--Touchard 公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enumeration of anti-invariant subspaces and Touchard's formula for the entries of the q-Hermite Catalan matrix

We express the number of anti-invariant subspaces for a linear operator on a finite vector space in terms of the number of its invariant subspaces. When the operator is diagonalizable with distinct eigenvalues, our formula gives a finite-field interpretation for the entries of the q-Hermite Catalan matrix. We also obtain an interesting new proof of Touchard's formula for these entries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信