探究铁(III)、锰(III)、锰(II)和铜(II)化合物在酿酒酵母和黑僵菌模型中的抗氧化活性

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Larissa M M Mattos, Hyan M Hottum, Daniele C Pires, Bruna B Segat, Adolfo Horn, Christiane Fernandes, Marcos D Pereira
{"title":"探究铁(III)、锰(III)、锰(II)和铜(II)化合物在酿酒酵母和黑僵菌模型中的抗氧化活性","authors":"Larissa M M Mattos, Hyan M Hottum, Daniele C Pires, Bruna B Segat, Adolfo Horn, Christiane Fernandes, Marcos D Pereira","doi":"10.1093/femsyr/foad052","DOIUrl":null,"url":null,"abstract":"Reactive oxygen species (ROS) are closely related to oxidative stress, aging, and the onset of human diseases. To mitigate ROS-induced damages, extensive research has focused on examining the antioxidative attributes of various synthetic/natural substances. Coordination compounds serving as synthetic antioxidants have emerged as a promising approach to attenuate ROS toxicity. Herein, we investigated the antioxidant potential of a series of Fe(III) (1), Mn(III)Mn(II) (2) and Cu(II) (3) coordination compounds synthesized with the ligand N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]-propylamine in Saccharomyces cerevisiae exposed to oxidative stress. We also assessed the antioxidant potential of these complexes in the alternative model of study, Galleria mellonella. DPPH analysis indicated that these complexes presented moderate antioxidant activity. However, treating Saccharomyces cerevisiae with 1, 2 and 3 increased the tolerance against oxidative stress and extended yeast lifespan. The treatment of yeast cells with these complexes decreased lipid peroxidation and catalase activity in stressed cells, whilst no change in SOD activity was observed. Moreover, these complexes induced the Hsp104 expression. In G. mellonella, complex administration extended larval survival under H2O2 stress and did not affect the insect's life cycle. Our results suggest that the antioxidant potential exhibited by these complexes could be further explored to mitigate various oxidative stress-related disorders.","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"10 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the antioxidant activity of Fe(III), Mn(III)Mn(II), and Cu(II) compounds in Saccharomyces cerevisiae and Galleria mellonella models of study\",\"authors\":\"Larissa M M Mattos, Hyan M Hottum, Daniele C Pires, Bruna B Segat, Adolfo Horn, Christiane Fernandes, Marcos D Pereira\",\"doi\":\"10.1093/femsyr/foad052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reactive oxygen species (ROS) are closely related to oxidative stress, aging, and the onset of human diseases. To mitigate ROS-induced damages, extensive research has focused on examining the antioxidative attributes of various synthetic/natural substances. Coordination compounds serving as synthetic antioxidants have emerged as a promising approach to attenuate ROS toxicity. Herein, we investigated the antioxidant potential of a series of Fe(III) (1), Mn(III)Mn(II) (2) and Cu(II) (3) coordination compounds synthesized with the ligand N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]-propylamine in Saccharomyces cerevisiae exposed to oxidative stress. We also assessed the antioxidant potential of these complexes in the alternative model of study, Galleria mellonella. DPPH analysis indicated that these complexes presented moderate antioxidant activity. However, treating Saccharomyces cerevisiae with 1, 2 and 3 increased the tolerance against oxidative stress and extended yeast lifespan. The treatment of yeast cells with these complexes decreased lipid peroxidation and catalase activity in stressed cells, whilst no change in SOD activity was observed. Moreover, these complexes induced the Hsp104 expression. In G. mellonella, complex administration extended larval survival under H2O2 stress and did not affect the insect's life cycle. Our results suggest that the antioxidant potential exhibited by these complexes could be further explored to mitigate various oxidative stress-related disorders.\",\"PeriodicalId\":12290,\"journal\":{\"name\":\"FEMS yeast research\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS yeast research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsyr/foad052\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foad052","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

活性氧(ROS)与氧化应激、衰老和人类疾病的发生密切相关。为了减轻 ROS 引起的损害,大量研究集中于研究各种合成/天然物质的抗氧化特性。作为合成抗氧化剂的配位化合物已成为一种有望减轻 ROS 毒性的方法。在此,我们研究了一系列与配体 N-(2-羟基苄基)-N-(2-吡啶基甲基)[(3-氯)(2-羟基)]-丙胺合成的 Fe(III) (1)、Mn(III)Mn(II) (2) 和 Cu(II) (3) 配位化合物在暴露于氧化应激的酿酒酵母中的抗氧化潜力。我们还评估了这些复合物在另一种研究模型--麦鸡中的抗氧化潜力。DPPH 分析表明,这些复合物具有中等程度的抗氧化活性。不过,用 1、2 和 3 处理酿酒酵母,可提高其对氧化应激的耐受性,并延长酵母的寿命。用这些复合物处理酵母细胞可降低受激细胞的脂质过氧化反应和过氧化氢酶活性,而 SOD 活性则没有变化。此外,这些复合物还能诱导 Hsp104 的表达。在 G. mellonella 中,施用复合物可延长幼虫在 H2O2 胁迫下的存活时间,而且不会影响昆虫的生命周期。我们的研究结果表明,可以进一步开发这些复合物的抗氧化潜力,以缓解各种与氧化应激相关的疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the antioxidant activity of Fe(III), Mn(III)Mn(II), and Cu(II) compounds in Saccharomyces cerevisiae and Galleria mellonella models of study
Reactive oxygen species (ROS) are closely related to oxidative stress, aging, and the onset of human diseases. To mitigate ROS-induced damages, extensive research has focused on examining the antioxidative attributes of various synthetic/natural substances. Coordination compounds serving as synthetic antioxidants have emerged as a promising approach to attenuate ROS toxicity. Herein, we investigated the antioxidant potential of a series of Fe(III) (1), Mn(III)Mn(II) (2) and Cu(II) (3) coordination compounds synthesized with the ligand N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]-propylamine in Saccharomyces cerevisiae exposed to oxidative stress. We also assessed the antioxidant potential of these complexes in the alternative model of study, Galleria mellonella. DPPH analysis indicated that these complexes presented moderate antioxidant activity. However, treating Saccharomyces cerevisiae with 1, 2 and 3 increased the tolerance against oxidative stress and extended yeast lifespan. The treatment of yeast cells with these complexes decreased lipid peroxidation and catalase activity in stressed cells, whilst no change in SOD activity was observed. Moreover, these complexes induced the Hsp104 expression. In G. mellonella, complex administration extended larval survival under H2O2 stress and did not affect the insect's life cycle. Our results suggest that the antioxidant potential exhibited by these complexes could be further explored to mitigate various oxidative stress-related disorders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信