估算小地区非机构平民人口:使用公共使用数据的修正队列构成方法

IF 1.6 Q2 DEMOGRAPHY
Andrew C. Forrester
{"title":"估算小地区非机构平民人口:使用公共使用数据的修正队列构成方法","authors":"Andrew C. Forrester","doi":"10.1007/s12546-023-09322-x","DOIUrl":null,"url":null,"abstract":"<p>This article develops a demographic method to estimate the civilian noninstitutional population for counties and county equivalents in the U.S. While these data provide the key sampling frame for national labor market surveys and denominators for labor market prevalence rates, the data are thus far unavailable for small areas. I develop a modified cohort component method to produce novel, monthly estimates of the civilian noninstitutional population for all U.S. counties using publicly available data on population and vital statistics with minimal modifications. The resulting population data may be used by researchers and policymakers to study within-year population dynamics as they relate to economic and demographic factors. I further extend the method to produce short-term population projections that include the most current vital statistics. The method compares favorably to existing annual, midyear estimates by the U.S. Census Bureau, but is prone to error in areas with fewer vital events.\n</p>","PeriodicalId":45624,"journal":{"name":"JOURNAL OF POPULATION RESEARCH","volume":"48 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the civilian noninstitutional population for small areas: a modified cohort component approach using public use data\",\"authors\":\"Andrew C. Forrester\",\"doi\":\"10.1007/s12546-023-09322-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article develops a demographic method to estimate the civilian noninstitutional population for counties and county equivalents in the U.S. While these data provide the key sampling frame for national labor market surveys and denominators for labor market prevalence rates, the data are thus far unavailable for small areas. I develop a modified cohort component method to produce novel, monthly estimates of the civilian noninstitutional population for all U.S. counties using publicly available data on population and vital statistics with minimal modifications. The resulting population data may be used by researchers and policymakers to study within-year population dynamics as they relate to economic and demographic factors. I further extend the method to produce short-term population projections that include the most current vital statistics. The method compares favorably to existing annual, midyear estimates by the U.S. Census Bureau, but is prone to error in areas with fewer vital events.\\n</p>\",\"PeriodicalId\":45624,\"journal\":{\"name\":\"JOURNAL OF POPULATION RESEARCH\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF POPULATION RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12546-023-09322-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEMOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF POPULATION RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12546-023-09322-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

虽然这些数据为全国劳动力市场调查提供了关键的抽样框架,也为劳动力市场流行率提供了分母,但迄今为止还没有小地区的数据。我开发了一种经过修改的队列成分方法,利用公开的人口和生命统计数据,以最小的改动,按月估算出美国所有县的平民非机构人口。由此得出的人口数据可供研究人员和决策者用来研究与经济和人口因素相关的年内人口动态。我进一步扩展了这一方法,以生成包含最新生命统计数据的短期人口预测。该方法与美国人口普查局现有的年度和年中估算方法相比效果更佳,但在人口动态事件较少的地区容易出现误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Estimating the civilian noninstitutional population for small areas: a modified cohort component approach using public use data

Estimating the civilian noninstitutional population for small areas: a modified cohort component approach using public use data

This article develops a demographic method to estimate the civilian noninstitutional population for counties and county equivalents in the U.S. While these data provide the key sampling frame for national labor market surveys and denominators for labor market prevalence rates, the data are thus far unavailable for small areas. I develop a modified cohort component method to produce novel, monthly estimates of the civilian noninstitutional population for all U.S. counties using publicly available data on population and vital statistics with minimal modifications. The resulting population data may be used by researchers and policymakers to study within-year population dynamics as they relate to economic and demographic factors. I further extend the method to produce short-term population projections that include the most current vital statistics. The method compares favorably to existing annual, midyear estimates by the U.S. Census Bureau, but is prone to error in areas with fewer vital events.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
18
期刊介绍: The Journal of Population Research is a peer-reviewed, international journal which publishes papers on demography and population-related issues. Coverage is not restricted geographically. The Journal publishes substantive empirical analyses, theoretical works, applied research and contributions to methodology. Submissions may take the form of original research papers, perspectives, review articles and shorter technical research notes. Special issues emanating from conferences and other meetings are also considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信