本质无序蛋白质动力学中的静电和疏水性

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
Renee Vancraenenbroeck, Hagen Hofmann
{"title":"本质无序蛋白质动力学中的静电和疏水性","authors":"Renee Vancraenenbroeck,&nbsp;Hagen Hofmann","doi":"10.1140/epje/s10189-023-00383-7","DOIUrl":null,"url":null,"abstract":"<div><p>Internal friction is a major contribution to the dynamics of intrinsically disordered proteins (IDPs). Yet, the molecular origin of internal friction has so far been elusive. Here, we investigate whether attractive electrostatic interactions in IDPs modulate internal friction differently than the hydrophobic effect. To this end, we used nanosecond fluorescence correlation spectroscopy (nsFCS) and single-molecule Förster resonance energy transfer (FRET) to quantify the conformation and dynamics of the disordered DNA-binding domains Myc, Max and Mad at different salt concentrations. We find that internal friction effects are stronger when the chain is compacted by electrostatic attractions compared to the hydrophobic effect. Although the effect is moderate, the results show that the heteropolymeric nature of IDPs is reflected in their dynamics.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"46 12","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-023-00383-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrostatics and hydrophobicity in the dynamics of intrinsically disordered proteins\",\"authors\":\"Renee Vancraenenbroeck,&nbsp;Hagen Hofmann\",\"doi\":\"10.1140/epje/s10189-023-00383-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Internal friction is a major contribution to the dynamics of intrinsically disordered proteins (IDPs). Yet, the molecular origin of internal friction has so far been elusive. Here, we investigate whether attractive electrostatic interactions in IDPs modulate internal friction differently than the hydrophobic effect. To this end, we used nanosecond fluorescence correlation spectroscopy (nsFCS) and single-molecule Förster resonance energy transfer (FRET) to quantify the conformation and dynamics of the disordered DNA-binding domains Myc, Max and Mad at different salt concentrations. We find that internal friction effects are stronger when the chain is compacted by electrostatic attractions compared to the hydrophobic effect. Although the effect is moderate, the results show that the heteropolymeric nature of IDPs is reflected in their dynamics.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"46 12\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epje/s10189-023-00383-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-023-00383-7\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-023-00383-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

内摩擦力是内在无序蛋白(IDPs)动力学的一个主要因素。然而,内摩擦力的分子起源至今仍难以捉摸。在此,我们研究了 IDPs 中的吸引性静电相互作用是否以不同于疏水效应的方式调节内摩擦力。为此,我们使用纳秒荧光相关光谱(nsFCS)和单分子佛斯特共振能量转移(FRET)来量化无序 DNA 结合域 Myc、Max 和 Mad 在不同盐浓度下的构象和动力学。我们发现,与疏水效应相比,当链被静电吸引压实时,内摩擦效应更强。虽然这种效应是温和的,但结果表明 IDPs 的异聚性质反映在其动力学中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrostatics and hydrophobicity in the dynamics of intrinsically disordered proteins

Electrostatics and hydrophobicity in the dynamics of intrinsically disordered proteins

Internal friction is a major contribution to the dynamics of intrinsically disordered proteins (IDPs). Yet, the molecular origin of internal friction has so far been elusive. Here, we investigate whether attractive electrostatic interactions in IDPs modulate internal friction differently than the hydrophobic effect. To this end, we used nanosecond fluorescence correlation spectroscopy (nsFCS) and single-molecule Förster resonance energy transfer (FRET) to quantify the conformation and dynamics of the disordered DNA-binding domains Myc, Max and Mad at different salt concentrations. We find that internal friction effects are stronger when the chain is compacted by electrostatic attractions compared to the hydrophobic effect. Although the effect is moderate, the results show that the heteropolymeric nature of IDPs is reflected in their dynamics.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信