Yi-Wei Shen, Rui-Qian Li, Guan-Ting Liu, Jingyi Yu, Xuming He, Lilin Yi, and Cheng Wang
{"title":"深度光子水库计算递归网络","authors":"Yi-Wei Shen, Rui-Qian Li, Guan-Ting Liu, Jingyi Yu, Xuming He, Lilin Yi, and Cheng Wang","doi":"10.1364/optica.506635","DOIUrl":null,"url":null,"abstract":"Deep neural networks usually process information through multiple hidden layers. However, most hardware reservoir computing recurrent networks only have one hidden reservoir layer, which significantly limits the capability of solving practical complex tasks. Here we show a deep photonic reservoir computing (PRC) architecture, which is constructed by cascading injection-locked semiconductor lasers. In particular, the connection between successive hidden layers is all optical, without any optical-electrical conversion or analog-digital conversion. The proof of concept PRC consisting of 4 hidden layers and a total of 320 interconnected neurons (80 neurons per layer) is demonstrated in experiment. The deep PRC is applied in solving the real-world problem of signal equalization in an optical fiber communication system. It is found that the deep PRC exhibits strong capability in compensating for the nonlinear impairment of optical fibers.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"12 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep photonic reservoir computing recurrent network\",\"authors\":\"Yi-Wei Shen, Rui-Qian Li, Guan-Ting Liu, Jingyi Yu, Xuming He, Lilin Yi, and Cheng Wang\",\"doi\":\"10.1364/optica.506635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks usually process information through multiple hidden layers. However, most hardware reservoir computing recurrent networks only have one hidden reservoir layer, which significantly limits the capability of solving practical complex tasks. Here we show a deep photonic reservoir computing (PRC) architecture, which is constructed by cascading injection-locked semiconductor lasers. In particular, the connection between successive hidden layers is all optical, without any optical-electrical conversion or analog-digital conversion. The proof of concept PRC consisting of 4 hidden layers and a total of 320 interconnected neurons (80 neurons per layer) is demonstrated in experiment. The deep PRC is applied in solving the real-world problem of signal equalization in an optical fiber communication system. It is found that the deep PRC exhibits strong capability in compensating for the nonlinear impairment of optical fibers.\",\"PeriodicalId\":19515,\"journal\":{\"name\":\"Optica\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/optica.506635\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/optica.506635","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Deep photonic reservoir computing recurrent network
Deep neural networks usually process information through multiple hidden layers. However, most hardware reservoir computing recurrent networks only have one hidden reservoir layer, which significantly limits the capability of solving practical complex tasks. Here we show a deep photonic reservoir computing (PRC) architecture, which is constructed by cascading injection-locked semiconductor lasers. In particular, the connection between successive hidden layers is all optical, without any optical-electrical conversion or analog-digital conversion. The proof of concept PRC consisting of 4 hidden layers and a total of 320 interconnected neurons (80 neurons per layer) is demonstrated in experiment. The deep PRC is applied in solving the real-world problem of signal equalization in an optical fiber communication system. It is found that the deep PRC exhibits strong capability in compensating for the nonlinear impairment of optical fibers.
期刊介绍:
Optica is an open access, online-only journal published monthly by Optica Publishing Group. It is dedicated to the rapid dissemination of high-impact peer-reviewed research in the field of optics and photonics. The journal provides a forum for theoretical or experimental, fundamental or applied research to be swiftly accessed by the international community. Optica is abstracted and indexed in Chemical Abstracts Service, Current Contents/Physical, Chemical & Earth Sciences, and Science Citation Index Expanded.