\(\mathbb {R}^3\) 中弗拉索夫-泊松系统的非线性朗道阻尼:泊松均衡

IF 2.4 1区 数学 Q1 MATHEMATICS
Alexandru D. Ionescu, Benoit Pausader, Xuecheng Wang, Klaus Widmayer
{"title":"\\(\\mathbb {R}^3\\) 中弗拉索夫-泊松系统的非线性朗道阻尼:泊松均衡","authors":"Alexandru D. Ionescu,&nbsp;Benoit Pausader,&nbsp;Xuecheng Wang,&nbsp;Klaus Widmayer","doi":"10.1007/s40818-023-00161-w","DOIUrl":null,"url":null,"abstract":"<div><p>We prove asymptotic stability of the Poisson homogeneous equilibrium among solutions of the Vlasov–Poisson system in the Euclidean space <span>\\(\\mathbb {R}^3\\)</span>. More precisely, we show that small, smooth, and localized perturbations of the Poisson equilibrium lead to global solutions of the Vlasov–Poisson system, which scatter to linear solutions at a polynomial rate as <span>\\(t\\rightarrow \\infty \\)</span>. The Euclidean problem we consider here differs significantly from the classical work on Landau damping in the periodic setting, in several ways. Most importantly, the linearized problem cannot satisfy a “Penrose condition”. As a result, our system contains resonances (small divisors) and the electric field is a superposition of an electrostatic component and a larger oscillatory component, both with polynomially decaying rates.</p></div>","PeriodicalId":36382,"journal":{"name":"Annals of Pde","volume":"10 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Landau Damping for the Vlasov–Poisson System in \\\\(\\\\mathbb {R}^3\\\\): The Poisson Equilibrium\",\"authors\":\"Alexandru D. Ionescu,&nbsp;Benoit Pausader,&nbsp;Xuecheng Wang,&nbsp;Klaus Widmayer\",\"doi\":\"10.1007/s40818-023-00161-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove asymptotic stability of the Poisson homogeneous equilibrium among solutions of the Vlasov–Poisson system in the Euclidean space <span>\\\\(\\\\mathbb {R}^3\\\\)</span>. More precisely, we show that small, smooth, and localized perturbations of the Poisson equilibrium lead to global solutions of the Vlasov–Poisson system, which scatter to linear solutions at a polynomial rate as <span>\\\\(t\\\\rightarrow \\\\infty \\\\)</span>. The Euclidean problem we consider here differs significantly from the classical work on Landau damping in the periodic setting, in several ways. Most importantly, the linearized problem cannot satisfy a “Penrose condition”. As a result, our system contains resonances (small divisors) and the electric field is a superposition of an electrostatic component and a larger oscillatory component, both with polynomially decaying rates.</p></div>\",\"PeriodicalId\":36382,\"journal\":{\"name\":\"Annals of Pde\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pde\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40818-023-00161-w\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pde","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40818-023-00161-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了欧几里得空间 \(\mathbb {R}^3\) 中 Vlasov-Poisson 系统解之间的泊松均质均衡的渐近稳定性。更确切地说,我们证明了对泊松均衡的小的、平滑的和局部的扰动会导致 Vlasov-Poisson 系统的全局解,而这些解会以多项式速率分散为线性解,如 \(t\rightarrow \infty \)。我们在此考虑的欧几里得问题在几个方面与周期环境下的兰道阻尼经典研究有很大不同。最重要的是,线性化问题不能满足 "彭罗斯条件"。因此,我们的系统包含共振(小除数),电场是静电分量和较大振荡分量的叠加,两者都具有多项式衰减速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Landau Damping for the Vlasov–Poisson System in \(\mathbb {R}^3\): The Poisson Equilibrium

We prove asymptotic stability of the Poisson homogeneous equilibrium among solutions of the Vlasov–Poisson system in the Euclidean space \(\mathbb {R}^3\). More precisely, we show that small, smooth, and localized perturbations of the Poisson equilibrium lead to global solutions of the Vlasov–Poisson system, which scatter to linear solutions at a polynomial rate as \(t\rightarrow \infty \). The Euclidean problem we consider here differs significantly from the classical work on Landau damping in the periodic setting, in several ways. Most importantly, the linearized problem cannot satisfy a “Penrose condition”. As a result, our system contains resonances (small divisors) and the electric field is a superposition of an electrostatic component and a larger oscillatory component, both with polynomially decaying rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Pde
Annals of Pde Mathematics-Geometry and Topology
CiteScore
3.70
自引率
3.60%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信