确定人工自旋冰体育场形纳米岛退磁系数的数值方法

IF 1.1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Victoria Martinez;Ezio Iacocca
{"title":"确定人工自旋冰体育场形纳米岛退磁系数的数值方法","authors":"Victoria Martinez;Ezio Iacocca","doi":"10.1109/LMAG.2023.3334670","DOIUrl":null,"url":null,"abstract":"The shape of nanoislands gives rise to a demagnetizing field that is primarily responsible for the orientation of the magnetization along an axis. In the context of magnetization dynamics, the demagnetization (demag) field also determines the resonant frequencies captured by Kittel's equations. Analytically, we require demag factors that can be obtained exactly for a few geometries, including ellipsoids and prisms. However, analytical expressions are not available for other shapes, limiting the use of Kittel's equation as a predictive model. Here, we present a method to obtain the demag factors from micromagnetic simulations with good accuracy. Similar to other experiments, ferromagnetic resonance was obtained, but we use orthogonal field conditions to fit Kittel's equation unambiguously and obtain the demag factors with good accuracy. This method will be useful to determine demag factors under the ellipsoidal approximation for stadium-shaped nanoislands used in artificial spin ices and thus lead to a better prediction in their ferromagnetic resonance and band structures.","PeriodicalId":13040,"journal":{"name":"IEEE Magnetics Letters","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Numerical Method to Determine Demagnetization Factors of Stadium-Shaped Nanoislands for Artificial Spin Ices\",\"authors\":\"Victoria Martinez;Ezio Iacocca\",\"doi\":\"10.1109/LMAG.2023.3334670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The shape of nanoislands gives rise to a demagnetizing field that is primarily responsible for the orientation of the magnetization along an axis. In the context of magnetization dynamics, the demagnetization (demag) field also determines the resonant frequencies captured by Kittel's equations. Analytically, we require demag factors that can be obtained exactly for a few geometries, including ellipsoids and prisms. However, analytical expressions are not available for other shapes, limiting the use of Kittel's equation as a predictive model. Here, we present a method to obtain the demag factors from micromagnetic simulations with good accuracy. Similar to other experiments, ferromagnetic resonance was obtained, but we use orthogonal field conditions to fit Kittel's equation unambiguously and obtain the demag factors with good accuracy. This method will be useful to determine demag factors under the ellipsoidal approximation for stadium-shaped nanoislands used in artificial spin ices and thus lead to a better prediction in their ferromagnetic resonance and band structures.\",\"PeriodicalId\":13040,\"journal\":{\"name\":\"IEEE Magnetics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Magnetics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10323140/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Magnetics Letters","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10323140/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

纳米岛的形状会产生去磁场,而去磁场是磁化沿轴定向的主要原因。在磁化动力学的背景下,去磁(demag)场也决定了基特尔方程所捕捉到的共振频率。从分析角度看,我们需要去磁因子,这些因子可以精确地从包括椭圆体和棱柱体在内的一些几何图形中获得。然而,对于其他形状,我们无法获得分析表达式,从而限制了基特尔方程作为预测模型的使用。在这里,我们提出了一种从微磁模拟中精确获得德马格因子的方法。与其他实验类似,我们也获得了铁磁共振,但我们使用了正交场条件来明确拟合 Kittel 方程,并准确地获得了去磁因子。这种方法将有助于在椭球近似条件下确定人工自旋冰中使用的体育场形纳米岛的去磁因子,从而更好地预测其铁磁共振和带状结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Numerical Method to Determine Demagnetization Factors of Stadium-Shaped Nanoislands for Artificial Spin Ices
The shape of nanoislands gives rise to a demagnetizing field that is primarily responsible for the orientation of the magnetization along an axis. In the context of magnetization dynamics, the demagnetization (demag) field also determines the resonant frequencies captured by Kittel's equations. Analytically, we require demag factors that can be obtained exactly for a few geometries, including ellipsoids and prisms. However, analytical expressions are not available for other shapes, limiting the use of Kittel's equation as a predictive model. Here, we present a method to obtain the demag factors from micromagnetic simulations with good accuracy. Similar to other experiments, ferromagnetic resonance was obtained, but we use orthogonal field conditions to fit Kittel's equation unambiguously and obtain the demag factors with good accuracy. This method will be useful to determine demag factors under the ellipsoidal approximation for stadium-shaped nanoislands used in artificial spin ices and thus lead to a better prediction in their ferromagnetic resonance and band structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Magnetics Letters
IEEE Magnetics Letters PHYSICS, APPLIED-
CiteScore
2.40
自引率
0.00%
发文量
37
期刊介绍: IEEE Magnetics Letters is a peer-reviewed, archival journal covering the physics and engineering of magnetism, magnetic materials, applied magnetics, design and application of magnetic devices, bio-magnetics, magneto-electronics, and spin electronics. IEEE Magnetics Letters publishes short, scholarly articles of substantial current interest. IEEE Magnetics Letters is a hybrid Open Access (OA) journal. For a fee, authors have the option making their articles freely available to all, including non-subscribers. OA articles are identified as Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信